多煤层复杂煤质配煤入选方案的研究  被引量:4

Study of the schemes for washing coal of varying properties coming from multiple seams in a blended manner

在线阅读下载全文

作  者:史学锋 苟晓东 赵伟 王章国[3] SHI Xuefeng;GOU Xiaodong;ZHAO Wei;WANG Zhangguo(Wuhai Energy Co.Ltd.,National Energy Group,Wuhai 016062,China;Guoneng Zhishen Control Technology Co.Ltd.,Beijing 100000,China;China University of Mining and Technology,Xuzhou 221116,China)

机构地区:[1]国家能源集团乌海能源有限责任公司,内蒙古乌海016062 [2]国能智深控制技术有限公司,北京100000 [3]中国矿业大学化工学院,江苏徐州221116

出  处:《选煤技术》2022年第3期96-102,共7页Coal Preparation Technology

基  金:国家自然科学基金资助项目(51304195)。

摘  要:针对入选原煤煤层复杂多变、品种繁多,配煤计算复杂,劳动强度大,生产效率低等问题,骆驼山洗煤厂通过建立数学模型,采用专业数学计算软件——MATLAB编写粒子群优化算法(PSO)程序,根据入选煤的性质预测产品的数质量和分选工艺参数,对多煤种进行了炼焦煤配洗寻优计算,以快速、准确地计算出最优配煤比例并获得参考洗选参数。结果表明:在保证精煤指标的前提下,多煤层复杂煤质配洗入选方案降低了配煤成本,提高了生产效率,降低了员工的劳动强度,节约了人工成本,显著提高了经济效益。For washing the coal which comes from multiple seams and has varied and changing properties at Luotuoshan Coal Preparation Plant, the problems encountered are complicated coal blending calculations, high labor intensity and low washing efficiency. To tackle these problems, the particles swarm optimization(PSO)—based special mathematic software MATLAB is used to compile and develop the mathematic models. This makes it possible to predict the quantity-quality data and the coal separation parameters based on property of raw coal treated, make optimum calculation of the scheme for washing the different coking coal in blended manner, make rapid and accurate calculation of optimum blending ratios and provide the separation parameters for reference. Study result shows that through adoption of the scheme, while ensuring the quality indices of the clean coal products, there can be seen reductions in coal blending cost, labor intensity and cost, and much improved coal cleaning efficiency and economic result.

关 键 词:配煤 炼焦煤配洗 粒子群优化算法 MATLAB 数学模型 

分 类 号:TD941.6[矿业工程—选矿]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象