检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘岩 王金东[2] 赵海洋[2] 王斌武 韩兴国 LIU Yan;WANG Jindong;ZHAO Haiyang;WANG Binwu;HAN Xingguo(School of Energy and Building Environment,Guilin University of Aerospace Technology,Guilin Guangxi 541004,China;School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing Helongjiang 163318,China)
机构地区:[1]桂林航天工业学院能源与建筑环境学院,广西桂林541004 [2]东北石油大学机械科学与工程学院,黑龙江大庆163318
出 处:《机床与液压》2022年第12期174-180,共7页Machine Tool & Hydraulics
基 金:中国博士后科学基金项目(2015M423);广西自然科学基金项目(2018GXNSFAA281306)。
摘 要:针对往复机轴承性能衰退评估中模型适应性和指标量化困难等问题,提出一种基于奇异谱分布与核模糊C均值聚类算法(KFCM)的性能衰退评估方法。利用变分模态分解(VMD)算法提取并优选主模态多重分形奇异谱(MSS)构成谱形态参量,经奇异值分解降噪处理,建立KFCM与二叉树支持向量机相结合的评估模型,并给出完整的轴承性能衰退评估流程;进行压缩机轴承磨损故障模拟及算法对比分析。结果表明:该方法能有效评定滑动轴承磨损故障性能衰退程度。In view of the model adaptability and the difficulty of index quantifying for reciprocating compressor bearings performance degradation evaluation,a performance degradation evaluation algorithm was proposed based on singular spectrum distribution and kernel-based fuzzy C-means clustering method(KFCM).The multifractal singular spectrums(MSS)was extracted by using variation mode decomposition(VMD),the evaluation model combined with KFCM and binary tree SVM was established after denoised through singular value decomposition,and a complete bearings performance degradation evaluation process was given;compressor bearing wear fault simulation and algorithm comparative analysis were carried out.The results show that by using this method,the sliding bearing wear failure performance degradation degree can be effectively evaluated.
关 键 词:往复压缩机 故障评估 变分模态分解(VMD) 核模糊C均值聚类(KFCM) 谱估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49