检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张净雯 倪成诚 Zhang Jingwen;Ni Chengcheng(Chengdu Meteorological Bureau, Chengdu 611130, China)
机构地区:[1]成都市气象局,四川成都611130
出 处:《环境科学与管理》2022年第7期61-66,共6页Environmental Science and Management
摘 要:利用2014年-2020年逐日PM_(2.5)及地面气象要素资料,考察了成都地区PM_(2.5)的变化特征,分析了PM_(2.5)变化与气象要素变化的关系,建立了不同季节PM_(2.5)变化的多元回归预测模型。研究发现,成都地区PM_(2.5)存在显著的季节变化特征,冬季最高,夏季最低,自2014年来,呈逐年递减趋势。PM_(2.5)的变化与最大风速、降水量及平均风速、气压、日照时数的变化呈负相关,与气温、相对湿度变化呈正相关。不同季节各要素的贡献显著不同,冬季最大风速和降水的影响更大,春季和秋季平均气温的变化影响更大。Based on the daily PM_(2.5) and the surface meteorological elements data from 2014 to 2020,the variation characteristics of PM_(2.5) in different time scales in Chengdu were investigated.The relationship between the changes of PM_(2.5) and meteorological elements was analyzed,and the multivariate regression model was established to predict the change of PM_(2.5) in different seasons.PM_(2.5) in Chengdu has significant seasonal variation characteristics,with the highest concentration in winter and the lowest concentration in summer,and has been decreasing year by year since 2014.The change of PM_(2.5) has a significant negative linear correlation with the maximum wind speed,precipitation and the daily difference of average wind speed,air pressure and sunshine duration,and a significant positive linear correlation with the daily difference of air temperature and relative humidity.The contribution of different elements is significantly different in different seasons,the maximum wind speed and precipitation have a greater impact in winter,and the change of average temperature in spring and autumn has a greater impact.
关 键 词:成都 PM2.5 地面气象要素 逐步回归 相关性分析
分 类 号:X511[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.52.101