稀疏分解算法在炮位侦校雷达目标识别中的应用  被引量:1

Application of Sparse Decomposition Algorithm in Target Recognition of Gun Position Detection and Calibration Radar

在线阅读下载全文

作  者:严军[1] 轩启运 YAN Jun;XUAN Qiyun(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China)

机构地区:[1]南京电子技术研究所,南京210039

出  处:《现代雷达》2022年第6期45-48,共4页Modern Radar

摘  要:传统炮位雷达在利用步进频信号进行一维距离像宽带合成时,存在回波数据量大、信噪比低等问题,系统复杂度高且成像质量不高,不利于弹丸目标的快速分类识别。针对上述问题,文中充分发掘并利用步进频信号的回波特性,将压缩感知思想应用其中,构建了基于多脉冲回波信号的广义联合块稀疏模型,提出了模型下的重构算法,并将字典学习算法与之结合,大大提高了低测量值、低信噪比情况下的弹丸目标一维距离像质量,降低后端数据处理量的同时提高了炮位雷达目标识别的正确率。理论分析和仿真实验均证明了所提算法的有效性。When traditional weapon positioning radar uses stepped frequency signals for wideband synthesis of one-dimensional range profiles,there are problems such as large echo data and low signal-to-noise ratio.The system has high complexity and low imaging quality,which is not conducive to the rapid classification of projectile targets recognition.In response to the above problems,this paper fully explores and utilizes the echo characteristics of stepped frequency signals,apply the idea of compression perception,constructs a generalized joint block sparse model based on multi-pulse echo signals,proposes a reconstruction algorithm under this model,and combines the dictionary learning algorithm is combined with it to further improve the imaging quality of projectile targets under the conditions of low measurement values and low signal-to-noise ratio,reduce the amount of back-end data processing,and improve the accuracy of the gun-position radar target recognition.Both theoretical analysis and simulation experiment prove the effectiveness of the proposed algorithm.

关 键 词:炮位雷达 一维距离像 压缩感知 广义联合块稀疏模型 目标识别 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象