检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞琦
出 处:《工业控制计算机》2022年第7期69-70,72,共3页Industrial Control Computer
摘 要:在基于格雷码进行相位展开过程中,如不能对格雷码进行准确的二值化则会影响最终的展开结果。然而由于全局照明等因素的影响,造成一部分像素点在经历暗条纹时的亮度高于经历亮条纹的亮度,因此对于基于强度的格雷码,正确的二值化仍旧是一个挑战。在该实验中,首先使用深度学习的方法对不同频率的格雷码进行二值化并得到绝对相位,然后使用传统方法得到绝对相位,通过分离直接光和间接光,将传统方法中间接光强于直接光的像素替换为基于深度学习的结果,该方法兼顾了传统方法和基于深度学习的方法,仿真实验证明该方法具有可行性和准确性。Failure to accurately binarise a Gray code during phase unwrapping can affect the final result.However,due to global illumination and other factors,there are some pixels that are brighter when they experience dark stripes than when they experience bright stripes,so it is still a challenge to binarise the intensity-based Gray codes.In this experiment,this paper firstly uses the deep learning method to binarise Gray codes with different frequencies and obtain the absolute phase,then use the traditional method to obtain the absolute phase.By separating direct and indirect light,the pixels where indirect light is stronger than direct light in the conventional method are replaced with the results based on deep learning,this method takes into account both the traditional method and the deep learning-based method,and simulation experiments prove the feasibility and accuracy of this method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7