检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张博[1,2] 赵巍 段鹏松[1,2] 武琦 ZHANG Bo;ZHAO Wei;DUAN Pengsong;WU Qi(Zhengzhou University School of Cyber Science and Engineering,Zhengzhou,Henan 450002,China;Zhengzhou University&Hanwei IoT Research Institute,Zhengzhou,Henan 450002,China)
机构地区:[1]郑州大学网络空间安全学院,河南郑州450002 [2]郑州大学汉威物联网研究院,河南郑州450002
出 处:《信号处理》2022年第6期1202-1212,共11页Journal of Signal Processing
基 金:国家自然科学基金面上项目(61972092);郑州市协同创新重大专项(20XTZX06013);河南省高等学校重点科研项目计划(21A520043)。
摘 要:传统身份识别技术需要将待识别人员信息预先录入,同时未考虑识别过程中的遮挡问题,不能满足公共场所基于监控视频的再识别需求。现有行人再识别算法多依赖于服饰等外观特征,难以进行长期追踪与再识别。针对以上问题,本文提出了一种对遮挡具有鲁棒性的人脸再识别算法。首先,对监控视频中的人脸进行检测与对齐,并判断人脸中存在的遮挡位置;其次,根据遮挡位置查找掩码字典并选择对应掩码,再用掩码排除遮挡元素;最后,使用注意力机制对多帧图片分配权重以更新特征,再使用分区域匹配方法得到识别结果。为验证该方法的有效性,本文分别在COX数据集和人工合成遮挡的数据集上对所提方法进行了测试。其中,在COX数据集上的rank-1准确率为95.2%,在合成遮挡的数据集上rank-1准确率为73.0%,相比现有方法有明显优势。Traditional identification technologies require pre-recorded information from target personals,while failing to consider any visual obstructions in the identification process,resulting in its unsatisfactory performance in surveillance-video-based reidentification scenarios,especially for public spaces. Most existing person re-identification approaches examine appearance features such as clothing and decoration,which are prone to change in time and space,and thus are unreliable for long-term tracking. An effective and reliable approach for long-term re-identification is to utilize stable biometric features such as facial features. However,with occlusion,low resolution,lack of illumination,and perspective gestures exhibited in surveillance videos,traditional facial recognition methods that are excellent for image recognition cannot perform well. To address these issues,this paper proposed a deep-learning-based face re-identification algorithm. The algorithm combined an attention mechanism with a mask dictionary to dynamically and appropriately assign weights to video frame features,thereby reducing the effect of occlusion and effectively improving the re-identification accuracy. Extensive experiments demonstrated that the proposed method was able to achieve a rank-1 accuracy of up to 95. 2% on the cox dataset,and 73. 0% on the same dataset with synthetic occlusion. These results comfirm the superior performance of the proposed algorithm compared to state-of-the-art re-identification algorithms.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38