基于时空演变多重特性建模的近海叶绿素浓度时序预测  被引量:1

Temporal Prediction of Chlorophyll Concentration in Coastal Waters Based on Multi-characteristics Modeling of Spatio-temporal Evolution

在线阅读下载全文

作  者:王成贺 宋宁 王京禹 刘安安 聂婕[1] WANG Chenghe;SONG Ning;WANG Jingyu;LIU Anan;NIE Jie(Faculty of Information Science and Engineering,Ocean University of China,Qingdao,Shandong 266100,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)

机构地区:[1]中国海洋大学信息科学与工程学部,山东青岛266100 [2]天津大学电气自动化与信息工程学院,天津300072

出  处:《信号处理》2022年第6期1232-1239,共8页Journal of Signal Processing

基  金:国家自然科学基金(62072418);中国海洋大学创新交叉团队培育计划(202042008);山东省重大科技创新工程(2019JZZY020705);中国海洋大学科研启动基金;青岛市科技计划重点研发专项(21-1-2-18-xx)。

摘  要:近海环境是沿海地区社会经济发展的关键支撑系统,近海环境的持续恶化对海洋经济的可持续发展带来了巨大挑战。叶绿素浓度的反映了水体理化性质的演变规律,对近海生态环境保护具有重要意义。尽管现有时序叶绿素浓度预测方法能从时空数据中挖掘有效信息,揭示时空数据的发展趋势和变化规律,但忽略了时空数据的结构化特征以及外界因素/突发因素对叶绿素浓度的影响。因此,本文提出基于时空演变多重特性建模的近海叶绿素浓度时序预测模型,并由四部分构成:自相关时序预测模块预测叶绿素浓度时序变化规律;多视角空间融合预测模块在构建预测点与其他位置叶绿素浓度空间关联性基础上,考虑海域气象状况,提高了空间叶绿素浓度预测的可靠性;基于环境上下文的突变模块通过对极端因素建模,挖掘突变因素与的叶绿素浓度变化的关联;时空动态聚合模块利用结构化模式,结合时间、空间叶绿素预测结果,实现不同圈层全要素近海叶绿素浓度建模。在渤海叶绿素浓度数据上的实验结果表明,该算法模型极大程度提升了近海叶绿素预测模型的准确性与可靠性。Chlorophyll plays an important role in the study of marine ecosystem.However,chlorophyll concentration is affected by many coupling factors,so it is a difficult problem to predict chlorophyll concentration accurately.These factors include not only the prediction of the site's own attributes,but also the range of other site attributes that can have an impact on the chlorophyll concentration of the prediction site.At present,the time series prediction of chlorophyll concentration is realized by only considering the self-factor of prediction point,and the effect of space factor on chlorophyll concentration is ignored.Moreover,the combination of flat factors lacks structure,and it is difficult to achieve reasonable feature expression.In this paper,a data-driven spatio-temporal aggregation model is proposed to predict chlorophyll concentration.In this model,autocorrelation time series prediction model and multi-view spatial fusion prediction model are dynamically combined,and the influence of sudden change of environmental factors is considered.This paper evaluates the models using 2017 data from the Bohai Sea Region,and the results are superior to several baseline methods.

关 键 词:叶绿素浓度预测 时空聚合 集成学习 

分 类 号:X55[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象