检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程真英[1] 江文姝 方旭 李瑞君[1] 黄强先[1] CHENG Zhenying;JIANG Wenshu;FANG Xu;LI Ruijun;HUANG Qiangxian(School of Instrument Science and Opto-Electronics Engineering,Hefei University of Technology,Hefei 230009)
机构地区:[1]合肥工业大学仪器科学与光电工程学院,合肥230009
出 处:《机械工程学报》2022年第10期24-30,共7页Journal of Mechanical Engineering
基 金:国家自然科学基金资助项目(51805136)。
摘 要:动态特性不理想是接触式探头系统动态测量误差的重要来源,严重制约探头测量速度和精度的提升。提出一种基于遗传算法优化Elman神经网络的探头动态特性补偿方法。针对微纳米接触式探头,采用遗传算法优化Elman神经网络的方法对其动态响应输出信号进行了补偿,使用自适应递推最小二乘方法辨识出补偿前后的探头系统动态模型。探头系统的动态测量不确定度由补偿前的77.8 nm减小至12.1 nm。遗传算法具有较好的全局搜索能力,克服了Elman神经网络容易陷入局部极值的缺陷,该动态补偿方法具有较快的网络训练速度和较高的动态补偿精度。仿真分析及不确定度评定结果都验证了该方法的有效性。The undesired dynamic characteristic is an important source for dynamic measurement errors of contact probe systems,which greatly restricts the improvement of measurement speed and precision.A dynamic compensation method based on genetic algorithm(GA)and Elman neural network(ENN)is presented to compensate the dynamic characteristics of probes.The genetic algorithm is used to optimize the ENN method to dynamically compensate the output signal of dynamic response.The adaptive recursive least-square method is used to identify the dynamic models of the probe system before and after compensation.The dynamic measurement uncertainty of the probe system is reduced from 77.8 nm to 12.1 nm.The global search ability of GA is utilized to overcome ENN’s shortcoming of easy convergence to the local extreme values.This method has fast network training speed and high dynamic compensation precision.The effectiveness of this method is verified by the simulation analysis and the uncertainty evaluation results.
关 键 词:接触式探头 动态补偿 遗传算法 ELMAN神经网络 测量不确定度
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.70.192