Empirical likelihood inference in autoregressive models with time-varying variances  

在线阅读下载全文

作  者:Yu Han Chunming Zhang 

机构地区:[1]College of Science,Northeast Electric Power University,Jilin,People’s Republic of China [2]Department of Statistics,University of Wisconsin-Madison,Madison,WI,USA

出  处:《Statistical Theory and Related Fields》2022年第2期129-138,共10页统计理论及其应用(英文)

基  金:The authors thank the editor,Prof.Jun Shao,and two anony-mous reviewers for helpful comments.Yu Han was supported by the Scientific Research Foundation of Jilin Education[grant number JJKH20200102KJ];The work of C.Zhang was partially supported by U.S.National Science Foundation[grant numbers DMS-2013486 and DMS-1712418];pro-vided by the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

摘  要:This paper develops the empirical likelihood(EL)inference procedure for parameters in autore-gressive models with the error variances scaled by an unknown nonparametric time-varying function.Compared with existing methods based on non-parametric and semi-parametric esti-mation,the proposed test statistic avoids estimating the variance function,while maintaining the asymptotic chi-square distribution under the null.Simulation studies demonstrate that the proposed EL procedure(a)is more stable,i.e.,depending less on the change points in the error variances,and(b)gets closer to the desired confidence level,than the traditional test statistic.

关 键 词:Empirical likelihood autoregressive model unconditional heteroscedasticity stable test 

分 类 号:O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象