检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li Xu Xiao-Yu Zhang Jin-Min Liang Jing Wang Ming Li Ling Jian Shu-qian Shen
机构地区:[1]College of Science,China University of Petroleum,Qingdao 266580 China [2]School of Mathematical Sciences,Capital Normal University,Beijing 100048,China [3]School of Economics and Management,China University of Petroleum,Qingdao 266580,China
出 处:《Communications in Theoretical Physics》2022年第5期61-69,共9页理论物理通讯(英文版)
基 金:supported by the Shandong Provincial Natural Science Foundation for Quantum Science No.ZR2020LLZ003,ZR2021LLZ002。
摘 要:Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data,while quantum machine learning algorithms could deal with big data with ease and provide exponential acceleration over classical counterparts.Meanwhile,variational quantum algorithms are widely proposed to solve relevant computational problems on noisy,intermediate-scale quantum devices.In this paper,we apply variational quantum algorithms to quantum support vector machines and demonstrate a proof-of-principle numerical experiment of this algorithm.In addition,in the classification stage,fewer qubits,shorter circuit depth,and simpler measurement requirements show its superiority over the former algorithms.
关 键 词:quantum support vector machine Hadamard test variational quantum algorithm
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7