Data-driven modeling of a four-dimensional stochastic projectile system  

在线阅读下载全文

作  者:Yong Huang Yang Li 黄勇;李扬(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China [2]School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

出  处:《Chinese Physics B》2022年第7期157-162,共6页中国物理B(英文版)

基  金:the Six Talent Peaks Project in Jiangsu Province,China(Grant No.JXQC-002)。

摘  要:The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations.With the rapid development of data science and scientific tools of measurement recently,there are numerous data-driven methods devoted to discovering governing laws from data.In this work,a data-driven method is employed to perform the modeling of the projectile based on the Kramers–Moyal formulas.More specifically,the four-dimensional projectile system is assumed as an It?stochastic differential equation.Then the least square method and sparse learning are applied to identify the drift coefficient and diffusion matrix from sample path data,which agree well with the real system.The effectiveness of the data-driven method demonstrates that it will become a powerful tool in extracting governing equations and predicting complex dynamical behaviors of the projectile.

关 键 词:data-driven modeling machine learning projectile systems Kramers–Moyal formulas 

分 类 号:TJ410[兵器科学与技术—火炮、自动武器与弹药工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象