Machine learning potential aided structure search for low-lying candidates of Au clusters  

在线阅读下载全文

作  者:Tonghe Ying Jianbao Zhu Wenguang Zhu 应通和;朱健保;朱文光(Department of Physics,University of Science and Technology of China,and Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,Hefei 230026,China;International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China)

机构地区:[1]Department of Physics,University of Science and Technology of China,and Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,Hefei 230026,China [2]International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

出  处:《Chinese Physics B》2022年第7期613-619,共7页中国物理B(英文版)

基  金:Computational support was provided by Supercomputing Center in USTC and National Supercomputing Center in Tianjin;the National Key Research and Development Program of China(Grant Nos.2017YFA0204904 and 2019YFA0210004)。

摘  要:A machine learning(ML)potential for Au clusters is developed through training on a dataset including several different sized clusters.This ML potential accurately covers the whole configuration space of Au clusters in a broad size range,thus expressing a good performance in search of their global minimum energy structures.Based on our potential,the low-lying structures of 17 different sized Au clusters are identified,which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo,revealing the critical size for the two-dimensional(2D)to three-dimensional(3D)structural transition.Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures.

关 键 词:machine learning potential gold cluster first-principles calculation 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] O562[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象