检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘望生[1] 潘海鹏[1] 王明环[2] Liu Wangsheng;Pan Haipeng;Wang Minghuan(School of Mechanical Engineering and Automation,Zhejiang Sci Tech Uniersity,Hangzhou 310018,China;Key laboratlory of Special Purpose Equipment and Adranced Processing Technology,2hejiang Unitersity of Technology,Ministry of Education,Hangzhou 310012,China)
机构地区:[1]浙江理工大学机械与自动控制学院,杭州310018 [2]浙江工业大学特种装备制造与先进加工技术教育部重点实验室,杭州310012
出 处:《仪器仪表学报》2022年第4期224-233,共10页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(51975532)项目资助。
摘 要:为了提高噪声混响环境下说话人跟踪系统的精度和稳健性,提出了一种多特征自适应无迹粒子滤波(MFAUPF)算法。该算法以语音信号的多特征作为观测信息,采用多假设和频选函数构建了时延选择机制和波束输出能量优化机制,并在两种机制融合的基础上构建了似然函数,弥补了单特征不能同时稳健噪声和混响的不足。由于说话人运动具有随机性,建立了声源跟踪的自适应CV模型,在此基础上将无迹卡尔曼滤波(UKF)与抗差估计理论相结合作为提议分布,提高了模型的适配能力。文中仿真和实测结果表明,在AUPF下,多特征算法比SBFSRP算法位置平均RMSE减少了18%以上,在多特征观测下,AUPF算法比CV算法位置平均RMSE减少了14%以上,所提算法具有跟踪精度高和数值稳定性强的特点。To improve the accuracy and robustness of the speaker tracking system in noisy and reverberant environments, an adaptive unscented particle filter(AUPF) algorithm based on multi-feature is proposed. The multi-feature of the speech signal is regarded as the observation information in this algorithm, where the multi-hypothesis and frequency selection function is applied to the mechanisms of time delay selection and beam output energy optimization. Subsequently, the likelihood function is constructed by combining these two mechanisms, which makes up for the deficiency that noise and reverberation cannot be restrained simultaneously by a single feature. Considering the randomness of speaker motion, a new proposal distribution is utilized in the particle filter algorithm, which combines the unscented Kalman filter(UKF) and the robust estimation theory based on the adaptive constant speed model to improve the adaptability of the model. The simulation and experimental results show that based on AUPF, the position average RMSE of multi feature algorithm is reduced by more than 18% compared with that of SBFSRP, and under multi-feature observation, the position average RMSE of AUPF algorithm is reduced by more than 14% compared with that of CV algorithm. It has the characteristics of high tracking accuracy and strong numerical stability.
关 键 词:说话人跟踪 麦克风阵列 室内混响 多特征 AUPF算法
分 类 号:TH712[机械工程—测试计量技术及仪器] TP216[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70