检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢玉鹏 张同康 陆军 丁进良 XING Yupeng;ZHANG Tongkang;LU Jun;DING Jinliang(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
出 处:《计算机集成制造系统》2022年第7期2041-2049,共9页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(62161160338,61988101,61733005);辽宁省重点研发计划资助项目(2020JH1/10100008)。
摘 要:厚板板形质量对于钢铁企业十分重要,由于厚板在生产过程中经过多个工序加工,涉及众多变量,加工后的厚板板形存在质量波动和异常原因未知的问题。针对这一难题,本文利用厚板生产过程中的工业大数据,提出一种具有根因分析能力的厚板板形质量预测模型。首先针对厚板板形质量预测问题,由于厚板小批量生产、生产过程变量非线性强,本文采用基于核偏最小二乘(KPLS)的方法建立厚板板形质量预测模型。然后针对厚板板形质量异常原因未知的问题,利用混合整数遗传算法(MIGA)分析影响厚板板形的生产过程工序和变量。通过将MIGA集成到KPLS建模中,选择厚板板形质量预测效果最好时的生产过程工序及变量,用于最终厚板板形质量预测和根因分析。最后,采用来自某钢铁厂的实际工业过程数据进行实验验证,通过工业实验表明,所提算法(KPLS-MIGA)能够实现对厚板板形质量的准确预测,并能够对厚板板形质量异常进行根因分析,从而寻找到影响厚板板形质量的关键变量,对实际的生产操作具有较好的指导意义。The quality of thick plate shape is essential to steel companies,and thick plates are processed through several phases in the manufacturing process,including many factors.The problems of quality fluctuation and unknown causes of abnormal shape exist in processed thick plates.For this reason,a model for forecasting the quality of thick plate shapes with root cause analysis was proposed to overcome this issue by employing big industrial data of the thick plate manufacturing process.Owing to the requirement of the small batch production and the significant nonlinearity of production process,a shape quality prediction model of thick plate based on Kernel Partial Least Squares(KPLS)was established.Aiming at the unknown reasons for the abnormal shape quality of thick plates,which was difficult to identify the variables that truly affect the shape quality of thick plates among many process variables,a Mixed Integer Genetic Algorithm(MIGA)was proposed to analyze the production processes and variables that affect the shape of thick plates.The production process and variables that were most effective in predicting the quality of thick plates were selected for the final thick plate shape prediction and root cause analysis by embedding MIGA into KPLS modeling.The actual industrial process data from a steel plant and production process experiment were verified,and the results showed that the proposed algorithm could accurately forecast the quality of thick plate shape,analyze the root cause,and thus identify the essential variables impacting thick plate quality,which was helpful for actual production operations.
关 键 词:厚板板形 核偏最小二乘 质量预测 优选特征子集 根因分析
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.38.243