检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:原敏乔 Yuan Minqiao(Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,Jilin,China)
机构地区:[1]中国科学院长春光学精密机械与物理研究所,吉林长春130033
出 处:《工程与试验》2022年第2期33-36,136,共5页Engineering and Test
摘 要:为解决汽车线束包胶机胶带人工目检效率及准确率低的问题,基于机器视觉技术提出了一种针对汽车线束包胶胶带切断与入槽状态的自动化视觉检测方法。首先获取胶带图像并灰度处理,然后基于归一化互相关(NCC)的图像匹配方法精确定位并提取胶带槽口检测区域,最后基于支持向量机(SVM)算法识别判断胶带切断与入槽情况。试验结果表明,该自动化视觉检测方法显著提高了胶带的检测效率及准确率。In order to solve the problem of low efficiency and low accuracy in manual eye detection of adhesive tapes on automobile harness wrapping machine,an automatic visual inspection method for the cutting and grooving state of adhesive tapes on automobile harness wrapping is proposed based on machine vision technology.Firstly,the image of adhesive tape is obtained and processed in gray scale,and then the detection area of tape notch is accurately located and extracted based on the image matching method of normalized cross-correlation(NCC).Finally,the cutting and grooving states of adhesive tapes are recognized and judged based on the support vector machine(SVM)algorithm.The test results show that the automatic visual inspection method significantly improves the efficiency and accuracy of tape detection.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.165.88