Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique  被引量:6

在线阅读下载全文

作  者:Raisa Abedin Disha Sajjad Waheed 

机构地区:[1]Department of Information and Communication Technology,Bangladesh University of Professionals,Mirpur Cantonment,Dhaka,1216,Bangladesh [2]Department of Information and Communication Technology,Mawlana Bhashani Science and Technology University,Santosh,Tangail,1902,Bangladesh

出  处:《Cybersecurity》2022年第2期119-140,共22页网络空间安全科学与技术(英文)

摘  要:To protect the network, resources, and sensitive data, the intrusion detection system (IDS) has become a fundamental component of organizations that prevents cybercriminal activities. Several approaches have been introduced and implemented to thwart malicious activities so far. Due to the effectiveness of machine learning (ML) methods, the proposed approach applied several ML models for the intrusion detection system. In order to evaluate the performance of models, UNSW-NB 15 and Network TON_IoT datasets were used for offline analysis. Both datasets are comparatively newer than the NSL-KDD dataset to represent modern-day attacks. However, the performance analysis was carried out by training and testing the Decision Tree (DT), Gradient Boosting Tree (GBT), Multilayer Perceptron (MLP), AdaBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for the binary classification task. As the performance of IDS deteriorates with a high dimensional feature vector, an optimum set of features was selected through a Gini Impurity-based Weighted Random Forest (GIWRF) model as the embedded feature selection technique. This technique employed Gini impurity as the splitting criterion of trees and adjusted the weights for two different classes of the imbalanced data to make the learning algorithm understand the class distribution. Based upon the importance score, 20 features were selected from UNSW-NB 15 and 10 features from the Network TON_IoT dataset. The experimental result revealed that DT performed well with the feature selection technique than other trained models of this experiment. Moreover, the proposed GIWRF-DT outperformed other existing methods surveyed in the literature in terms of the F1 score.

关 键 词:Cyber security Feature selection Intrusion Detection System Machine learning Network security 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象