检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Raisa Abedin Disha Sajjad Waheed
机构地区:[1]Department of Information and Communication Technology,Bangladesh University of Professionals,Mirpur Cantonment,Dhaka,1216,Bangladesh [2]Department of Information and Communication Technology,Mawlana Bhashani Science and Technology University,Santosh,Tangail,1902,Bangladesh
出 处:《Cybersecurity》2022年第2期119-140,共22页网络空间安全科学与技术(英文)
摘 要:To protect the network, resources, and sensitive data, the intrusion detection system (IDS) has become a fundamental component of organizations that prevents cybercriminal activities. Several approaches have been introduced and implemented to thwart malicious activities so far. Due to the effectiveness of machine learning (ML) methods, the proposed approach applied several ML models for the intrusion detection system. In order to evaluate the performance of models, UNSW-NB 15 and Network TON_IoT datasets were used for offline analysis. Both datasets are comparatively newer than the NSL-KDD dataset to represent modern-day attacks. However, the performance analysis was carried out by training and testing the Decision Tree (DT), Gradient Boosting Tree (GBT), Multilayer Perceptron (MLP), AdaBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for the binary classification task. As the performance of IDS deteriorates with a high dimensional feature vector, an optimum set of features was selected through a Gini Impurity-based Weighted Random Forest (GIWRF) model as the embedded feature selection technique. This technique employed Gini impurity as the splitting criterion of trees and adjusted the weights for two different classes of the imbalanced data to make the learning algorithm understand the class distribution. Based upon the importance score, 20 features were selected from UNSW-NB 15 and 10 features from the Network TON_IoT dataset. The experimental result revealed that DT performed well with the feature selection technique than other trained models of this experiment. Moreover, the proposed GIWRF-DT outperformed other existing methods surveyed in the literature in terms of the F1 score.
关 键 词:Cyber security Feature selection Intrusion Detection System Machine learning Network security
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.48.13