基于高效用关联规则挖掘的技术创新合作团队发现——以新能源汽车产业专利数据为例  被引量:3

Technology Innovation Cooperative Team Discovery Based on Efficient Association Mining:The Case Based on Patent Data in the New Energy Vehicle Industry

在线阅读下载全文

作  者:武庆圆 杨智杰 张雪雯 朱侯 Wu Qingyuan;Yang Zhijie;Zhang Xuewen;Zhu Hou(School of Internet Finance and Information Engineering,Guangdong University of Finance,Guangzhou 510521,China;School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou 510275,China;School of Information Management,Sun Yat-sen University,Guangzhou 510275,China)

机构地区:[1]广东金融学院互联网金融与信息工程学院,广东广州510521 [2]中山大学计算机学院,广东广州510275 [3]中山大学信息管理学院,广东广州510275

出  处:《科技管理研究》2022年第13期123-130,共8页Science and Technology Management Research

基  金:广东省哲学社会科学规划青年基金项目“基于多维深层专利引用网络的技术演进路径识别研究”(GD19YTS02)。

摘  要:以新能源汽车产业专利数据为例,将专利被引用频次、同族数量作为衡量专利原始效用的主要指标,并通过两步骤的高效用关联规则挖掘算法,获得专利权人的高效用合作项集,以发现高价值的技术创新合作团队。实证表明,将专利价值的评价模型与高效用关联规则挖掘方法相结合,能够极大提升技术创新合作团队发现的召回率。此外,与传统关联规则挖掘方法相比,基于高效用关联规则获得的高价值团队在分布数量、分布类型等方面呈现明显优势。Taking the patent data in the new energy vehicle industry as an example,the frequency of patent citation and the number of the same family were taken as the main indicators to measure the original utility of the patent.Using the two-steps effective utility association rule mining,both cooperative item sets of patentees with effective utilities and high-value technique innovation cooperative teams were mined.Experiments indicated that the recall rate of discovering technique innovation cooperative teams was enhanced largely by combining the patent value evaluation model with the effective utility association rule mining.Furthermore,in terms of distribution quantity and distribution type,the high-value teams identified by the effective utility association rule mining showed obvious advantages when compared with the classical association rule mining.

关 键 词:创新合作团队 高效用规则 新能源汽车 专利权人价值 

分 类 号:G350[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象