机构地区:[1]Lab of Low-Dimensional Materials Chemistry,Key Laboratory for Ultrafine Materials of Ministry of Education,Shanghai Engineering Research Center of Hierarchical Nanomaterials,School of Materials Science and Engineering,East China University of Science and Technology,Shanghai 200237,China [2]Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,School of Chemistry and Chemical Engineering,Shihezi University,Shihezi 832003,China [3]State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China
出 处:《Science China Materials》2022年第9期2453-2462,共10页中国科学(材料科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(52072124);Shanghai Municipal Science and Technology Major Project(2018SHZDZX03);the Natural Science Foundation of Shanghai(20ZR1414900);the Leading Talents in Shanghai in2018;the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning;the 111 Project(B14018)。
摘 要:The intrinsic sluggish conversion kinetics and severe shuttle effect in lithium-sulfur(Li-S)batteries are responsible for their poor reversible capacity and cycling longevity,which have greatly hindered their practical applications.To address these drawbacks,herein,we design and construct a heterostructured Ni/Ni_(2)P embedded in a mesoporous carbon nanosphere composite(Ni/Ni_(2)P-MCN)for boosting polysulfide catalytic conversion in Li-S batteries.The Ni/Ni_(2)PMCN-modified separator could not only prevent the shuttle effect significantly through abundant chemical adsorptive sites,but also demonstrate superior catalytic reactivities for the conversion of polysulfides.More importantly,the conductive carbon matrix with an exposed mesoporous structure can serve as an effective physical barrier to accommodate deposited insoluble Li_(2)S.Consequently,the cells with the Ni/Ni_(2)P-MCN-modified separator exhibit greatly boosted rate capability(431 mA h g^(-1) at 5 C)and cycling stability(a capacity decay of 0.031% per cycle after 1500 cycles).Even at an enhanced sulfur loading of 4.2 mg cm^(-2),a stable and superior areal capacity(about 3.5 mA h cm^(-2))has been demonstrated.We envision that the unique Ni/Ni_(2)P heterostructure in the porous carbon matrix could offer great potential for highperformance and sustained energy storage devices.锂硫电池固有的缓慢转化动力学和严重的穿梭效应导致其可逆容量和循环寿命差,严重阻碍了其实际应用.为了解决这些问题,我们设计并构建了一种Ni/Ni_(2)P异质结嵌入介孔碳纳米球的复合材料(Ni/Ni_(2)P-MCN),将其用于锂硫电池隔膜改性以促进多硫化物的催化转化.研究发现,Ni/Ni_(2)P-MCN改性隔膜可以通过丰富的异质结化学吸附位点吸附多硫化物、抑制穿梭效应,而且对多硫化物的转化具有优异的催化活性.此外,具有暴露介孔结构的导电碳球可以作为物理屏障,容纳沉积的不溶性Li_(2)S.因此,使用Ni/Ni_(2)P-MCN改性隔膜的电池显示出优异的倍率性能(5 C下431 mA h g^(-1))和循环稳定性(1500次循环下平均容量衰减约0.031%).在4.2 mg cm^(-2)的高载硫下,输出面积比容量约3.5 mA h cm^(-2).我们认为,这种独特的Ni/Ni_(2)P异质结/多孔碳复合材料在高性能、可持续储能器件中具备巨大的应用潜力.
关 键 词:lithium-sulfur batteries modified separators Ni/Ni2P heterostructure mesoporous carbon synergistic function
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...