A New Enhanced Arabic Light Stemmer for IR in Medical Documents  

在线阅读下载全文

作  者:Ra’ed M.Al-Khatib Taha Zerrouki Mohammed M.Abu Shquier Amar Balla Asef Al-Khateeb 

机构地区:[1]Department of Computer Sciences,Yarmouk University,Irbid,21163,Jordan [2]Faculty of Sciences and Applied Sciences,Bouira University,Bouira,Algeria [3]Faculty of Computer Science and Information Technology,Jerash University,Jordan [4]Ecole Nationale Supérieure d’Informatique(ESI),Algiers,Algeria [5]Department of Computer Science,College of Shari’a and Islamic Studies in Al Ahsaa,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia

出  处:《Computers, Materials & Continua》2021年第7期1255-1269,共15页计算机、材料和连续体(英文)

摘  要:This paper introduces a new enhanced Arabic stemming algorithm for solving the information retrieval problem,especially in medical documents.Our proposed algorithm is a light stemming algorithm for extracting stems and roots from the input data.One of the main challenges facing the light stemming algorithm is cutting off the input word,to extract the initial segments.When initiating the light stemmer with strong initial segments,the final extracting stems and roots will be more accurate.Therefore,a new enhanced segmentation based on deploying the Direct Acyclic Graph(DAG)model is utilized.In addition to extracting the powerful initial segments,the main two procedures(i.e.,stems and roots extraction),should be also reinforced with more efficient operators to improve the final outputs.To validate the proposed enhanced stemmer,four data sets are used.The achieved stems and roots resulted from our proposed light stemmer are compared with the results obtained from five other well-known Arabic light stemmers using the same data sets.This evaluation process proved that the proposed enhanced stemmer outperformed other comparative stemmers.

关 键 词:Machine learning information retrieval systems medical documents stemming algorithms arabic light stemmer natural language processing 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象