Novel Adaptive Binarization Method for Degraded Document Images  被引量:1

在线阅读下载全文

作  者:Siti Norul Huda Sheikh Abdullah Saad M.Ismail Mohammad Kamrul Hasan Palaiahnakote Shivakumara 

机构地区:[1]Center for Cyber Security,Faculty of Information Science and Technology,Universiti Kebangsaan Malaysia,Selangor,43600,Malaysia [2]The Faculty of Computer and Information Sciences,Aljouf University,Saudi Arabia [3]Faculty of Computer Systems and Information Technology,University of Malaya,Malaysia

出  处:《Computers, Materials & Continua》2021年第6期3815-3832,共18页计算机、材料和连续体(英文)

基  金:funded by the Ministry of Higher Education,Malaysia for providing facilities and financial support under the Long Research Grant Scheme LRGS-1-2019-UKM-UKM-2-7.

摘  要:Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.

关 键 词:Global and local thresholding adaptive binarization degraded document image image histogram document image binarization contest 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象