Variable-step-size second-order-derivative multistep method for solving first-order ordinary differential equations in system simulation  

在线阅读下载全文

作  者:Lei Zhang Chaofeng Zhang Mengya Liu 

机构地区:[1]School of Physics and Electronics Henan University,Kaifeng,Henan 475004,P.R.China

出  处:《International Journal of Modeling, Simulation, and Scientific Computing》2020年第1期42-57,共16页建模、仿真和科学计算国际期刊(英文)

基  金:supported by the National Natural Science Foundation of China Under Grant No.61773008.

摘  要:According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.

关 键 词:Numerical method variable step size variable order hermite interpolation ordinary differential equations 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象