The sum of two independent polynomially-modified hyperbolic secant random variables with application in computational finance  

在线阅读下载全文

作  者:A.A.L.Zadeh Hojatollah Zakerzadeh Hamzeh Torabi 

机构地区:[1]Department of Statistics Yazd University,Yazd,Iran

出  处:《International Journal of Modeling, Simulation, and Scientific Computing》2021年第4期201-214,共14页建模、仿真和科学计算国际期刊(英文)

摘  要:In this paper,by reshaping the hyperbolic secant distribution using Hermite polynomial,we devise a polynomially-modified hyperbolic secant distribution which is more flexible than secant distribution to capture the skewness,heavy-tailedness and kurtosis of data.As a portfolio possibly consists of multiple assets,the distribution of the sum of independent polynomially-modified hyperbolic secant random variables is derived.In exceptional cases,we evaluate risk measures such as value at risk and expected shortfall(ES)for the sum of two independent polynomially-modified hyperbolic secant random variables.Finally,using real datasets from four international computers stocks,such as Adobe Systems,Microsoft,Nvidia and Symantec Corporations,the effectiveness of the proposed model is shown by the goodness of Gram–Charlier-like expansion of hyperbolic secant law,for performance of value at risk and ES estimation,both in and out of the sample period.

关 键 词:Expected shortfall Gram–Charlier-like expansions heavy tailed distributions value at risk 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象