一种不同工艺条件下刀具磨损状态多类域适应迁移辨识方法  被引量:3

A Multi Class Domain Adaptive Transfer Identification Method for Tool Wear States under Different Processing Conditions

在线阅读下载全文

作  者:史珂铭 邹益胜[2] 刘永志 丁昆 丁国富[1] SHI Keming;ZOU Yisheng;LIU Yongzhi;DING Kun;DING Guofu(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu,610031;School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu,610031)

机构地区:[1]西南交通大学机械工程学院,成都610031 [2]西南交通大学计算机与人工智能学院,成都610031

出  处:《中国机械工程》2022年第15期1841-1849,共9页China Mechanical Engineering

基  金:国家重点研发计划(2020YFB1708001);四川省智能制造与机器人重大科技专项(2019ZDZX0021)。

摘  要:在新的工艺条件下,针对采用历史工艺条件进行训练的刀具磨损状态辨识模型识别准确率低的问题,提出了一种基于迁移学习的跨工艺条件刀具磨损状态辨识模型。构建卷积神经网络提取刀具样本可迁移特征,利用最大均值差异测量不同工艺条件下刀具样本分布差异,通过类间-类内距离约束提升源域特征的样本距离,对目标域数据概率矩阵采取最大化核范数的策略,以提取区分性高的目标域样本故障特征。以铣刀加工试验为例验证了模型的有效性,模型的平均辨识准确率为96.8%,比没有类间-类内距离约束与最大化核范数的方法平均辨识准确率提升4.9%。Under the new processing conditions,aiming at the problems of low identification accuracy rate of tool wear identification model trained under historical processing conditions,a tool wear state identification model across processing conditions was proposed based on transfer learning.Firstly,convolutional neural network was constructed to extract the transfer features of tool samples,and the difference of tool sample distributions was measured by the maximum mean difference under different processing conditions.Secondly,the sample distance of source domain features was improved by IDC.The strategy of maximizing the norm was adopted for the probability matrix of target data to extract the fault features of target domain samples with high discrimination.Finally,the milling cutter machining tests were taken as an example to verify the validity of the model.The average identification accuracy rate of the model is as 96.8%,which is as 4.9%higher than that of the method without IDC and maximum kernel norm.

关 键 词:刀具磨损 工艺条件 迁移状态辨识 类间-类内距离约束 最大化核范数 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象