检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haijin Cao Xin Meng Zhiyou Jing Xiaoxiao Yang
机构地区:[1]Key Laboratory of Marine Hazards Forecasting of Ministry of Natural Resources,Hohai University,Nanjing,210024,China [2]College of Oceanography,Hohai University,Nanjing,210024,China [3]State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou,510301,China
出 处:《Acta Oceanologica Sinica》2022年第7期26-41,共16页海洋学报(英文版)
基 金:The National Key Research and Development Program of China under contract No.2017YFA0604104;the National Natural Science Foundation of China under contract Nos 42176004,92058201 and 41776040;the Fundamental Research Funds for the Central Universities under contract No.B220202050.
摘 要:Submesoscale processes in marginal seas usually have complex generating mechanisms,highly dependent on the local background flow and forcing.This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea(SCS)and the different dynamical regimes for sub-regions.The spatial and seasonal variations of vertical vorticity,horizontal convergence,lateral buoyancy gradient,and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions,the northern region near the Luzon Strait(R1),the middle ocean basin(R2),the western SCS(R3),and the southern SCS(R4).The results suggest that the SCS submesoscale processes are highly heterogeneous in space,with different seasonalities in each sub-region.The submesoscale activities in the northern sub-regions(R1,R2)are active in winter but weak in summer,while there appears an almost seasonal anti-phase in the western region(R3)compared to R1 and R2.Interestingly,no clear seasonality of submesoscale features is shown in the southern region(R4).Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions.Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions.All these results suggest that the sub-regions have different regimes for submesoscale processes,e.g.,Kuroshio intrusion(R1),monsoon modulation(R2),frontal effects(R3),topography wakes(R4).
关 键 词:SUBMESOSCALE South China Sea high-resolution simulation spatial difference seasonal difference
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.34.209