改进移动曲面最小二乘拟合的Lidar数据滤波优化  被引量:10

Optimization of Lidar Data Filtering with Improved Least Square Fitting of Moving Curve

在线阅读下载全文

作  者:刘政奇 甘淑[1,2] Liu Zhengqi;Gan Shu(School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming,Yunnan 650093,China;Engineering Research Center for Application of Spatial Information Surveying and Mapping Technology in Plateau and Mountainous Areas of Yunnan University,Kunming,Yunnan 650093,China)

机构地区:[1]昆明理工大学国土资源工程学院,云南昆明650093 [2]云南省高校高原山区空间信息测绘技术应用工程研究中心,云南昆明650093

出  处:《应用激光》2022年第3期154-160,共7页Applied Laser

基  金:国家自然科学基金(41561083,41861054);云南省自然科学基金(2015FA016)。

摘  要:机载激光雷达已允许快速生成大面积区域的高分辨率数字高程模型,但是自动识别密集建筑物或茂密植被所覆盖区域的地面点与非地面点还比较困难。提出了一种移动曲面拟合最小二乘迭代算法自动快速对Lidar数据进行滤波,该方法采用移动窗口加权迭代最小二乘法来选择种子点,基于自适应阈值,逐步对非地面点和地面点进行滤波和分类。在四个研究区域进行的试验表明,新的滤波方法可以将市区和茂密植被覆盖的地面和非地面点分开。对于Ⅰ类误差,新算法的错误范围是4.08%~9.40%,对于Ⅱ类误差,错误范围是2.48%~7.63%,对于总误差,错误范围是5.01%~7.40%。Airborne lidar has allowed the rapid generation of high-resolution digital terrain models of large areas, but it is still difficult to automatically identify ground points and non-ground points in areas covered by dense buildings or dense vegetation. This paper proposes a mobile curve fitting least squares iterative algorithm automatically and quickly filters Lidar data. This method uses moving window weighted iterative least squares method to select seed points, and based on adaptive thresholds, it gradually filters and classifies non-ground points and ground points. Experiments in four study areas show that the new filtering method can separate the urban area and the ground and non-ground points covered by dense vegetation. For type Ⅰ errors, the error range of the new algorithm is 4.08% to 9.40%, for type Ⅱ errors, the error range is 2.48% to 7.63%, and for total errors, the error range is 5.01% to 7.40%.

关 键 词:数字高程模型 机载激光雷达 滤波 Ⅰ类误差 Ⅱ类误差 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象