检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yongjia Song Yannan Lu Hengshan Hu 宋永佳;陆彦楠;胡恒山(Department of Astronautic Science and Mechanics,Harbin Institute of Technology,Harbin 150001,China)
出 处:《Acta Mechanica Sinica》2022年第6期117-127,I0003,共12页力学学报(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(Grant Nos.11802074,42074057,11972132,and 11734017);China National Postdoctoral Program for Innovative Talents(Grant No.BX201700066);China Postdoctoral Science Foundation(Grant No.2018M630345);the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2020016)。
摘 要:Crack problems are often reduced to dual integral equations,which can be solved by expanding the displacement integral equation as a series in the form of Chebyshev-like or Jacobi polynomials.Schmidt’s multiplying-factor integration method has been one of the most favorable techniques for determining the expansion coefficients by constructing a well-posed system of linear algebraic equations.However,Schmidt’s method is less efficient for numerical computation because the matrix elements of the linear equations are evaluated from dual integrals.In this study,we propose a modified method to construct linear equations to efficiently determine the expansion coefficients.The modified technique is developed upon the application of certain multiplying factors to the traction integral equation and then integrating the resulting equation over“source”regions.Such manipulations simplify the matrix elements as single integrals.By carrying out numerical examples,we demonstrate that the technique is not only accurate but also very efficient.In particular,the method only needs approximately 1/5 of the computation time of Schmidt’s method.Therefore,this method can be used to replace Schmidt’s method and is expected to be very useful in solving crack problems.裂纹问题通常可归结为对偶积分方程,可通过将位移积分方程展开为类Chebyshev多项式或Jacobi多项式形式的级数来求解.通过构造一个适定的线性代数方程组来确定展开系数的施密特倍数因子积分法是最受欢迎的方法之一.然而,由于线性方程组的矩阵元素是从二重积分计算出来的,施密特方法的数值计算效率较低.本文提出了一种改进方法来构造线性方程组,以便有效地确定展开系数.改进技术是在将某些倍数因子应用于牵引积分方程,然后在“源”区域上积分得到的方程后发展起来的.该操作将矩阵元素简化为单重积分.文章通过数值算例证明了此方法的计算精度高,且效率高.尤其该方法只需要施密特方法计算时间的1/5左右.因此该方法可以用于代替施密特方法并有望在解决裂纹问题中发挥作用.
关 键 词:CRACK Dual integral equations Schmidt’s method Multiplying-factor integration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33