基于可变形卷积网络的思政课堂移动学习模式自动识别  

Automatic Recognition of Mobile Learning Patterns in Ideological and Political Classroom Based on Deformable Convolution Network

在线阅读下载全文

作  者:杜悦 刘婷 DU Yue;LIU Ting(Nursing School of Harbin Medical University Daqing Campus,Daqing 163319 China)

机构地区:[1]哈尔滨医科大学大庆校区护理学院,黑龙江大庆163319

出  处:《自动化技术与应用》2022年第8期101-105,共5页Techniques of Automation and Applications

摘  要:为解决传统学习模式自动识别方法中卷积核自身几何设计有限导致的识别精度较低的问题,提出基于可变形卷积网络的思政课堂移动学习模式自动识别。在经典网络中加入与学生头部运动情况相关的偏移矢量;利用可变形卷积层、池化层与全连接层构成可变形卷积网络模型;经过获取初始权值分布状况、误差计算等步骤完成网络模型训练;引入激活函数,调节神经元数量,完成学习模式自动识别。仿真实验证明,所提方法具有较高的自动识别精度与良好的数据处理能力。In order to solve the problem of low recognition accuracy caused by the limited geometric design of convolution kernel in traditional automatic learning pattern recognition method,an automatic recognition method of mobile learning pattern in ideological and political classroom based on deformable convolution network is proposed.The offset vector related to the movement of students’head is added into the classic network,and the deformable convolution is formed by using deformable convolution layer,pooling layer and full connection layer.After obtaining the initial weight distribution and error calculation,the network model training is completed,and the activation function is introduced to adjust the number of neurons to complete the automatic recognition of learning patterns.Simulation results show that the proposed method has high automatic recognition accuracy and good data processing ability.

关 键 词:可变形卷积网络 思政移动课堂 学习模式 自动识别 激活函数 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象