并网逆变器早期故障诊断  被引量:1

Incipient Parametric Faults of Grid Connected Inverters

在线阅读下载全文

作  者:魏胜风 帕孜来·马合木提[1] 樊鹏帅 WEI Shengfeng;PAZILAI Mahemuti;FAN Pengshuai(College of Electrical Engineering,Xinjiang University,Urumqi 830047,China)

机构地区:[1]新疆大学电气工程学院,乌鲁木齐830047

出  处:《华北电力大学学报(自然科学版)》2022年第4期64-72,共9页Journal of North China Electric Power University:Natural Science Edition

基  金:国家自然科学基金资助项目(61963034)。

摘  要:并网逆变器是快切换系统且长期处在恶劣工况环境中,可控器件自身标称值便发生偏移,逐渐向硬性故障转化,会造成重大经济损失甚至人员伤亡等。因此,以中点钳位(NPC)型并网逆变器为例,根据键合图(BG)理论建立NPC型逆变器的BG模型,并在BG模型中加入势(De)和流(Df)传感器建立该系统的诊断混合键图(DHBG)模型,再通过覆盖路径法利用节点的特性方程推导出全局解析冗余关系(GARRs)得到故障特征矩阵(FSM),进而对逆变器早期故障进行检测和定位(FDI),并设计了自适应阈值以减少错误报警现象。最后,利用20-sim平台进行仿真研究,验证了基于BG模型的GARRs方法在并网逆变器早期故障诊断方面的有效性。The grid connected inverter is a fast-switching system and is in a long-term hard working environment. In this case, the nominal value of the controllable device will shift and gradually turn into a hard fault, which will cause great economic losses and even casualties. Therefore, we took the neutral point clamped(NPC) grid inverter as an example and construct BG model of NPC inverter according to the theory of bond graph(BG). Then the diagnosis hybrid bond graph(DHBG) model was established after potential(De) and flow(Df) sensors were added to the BG model. Through the coverage path method we used node characteristic equation to deduce fault signature matrix(FSM) from the global analytical redundancy relationship(GARRs). Based on this, we realize inverter incipient faults detection and localization(FDI), and designed the adaptive threshold to reduce the false alarm. Finally, a simulation study using 20-sim platform was carried out to verify the effectiveness of the BG model-based GARRs method in incipient faults diagnosis of grid connected inverters.

关 键 词:中点钳位型逆变器 键合图理论 早期参数性故障 解析冗余关系 自适应阈值 

分 类 号:TM464[电气工程—电器] TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象