检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓亚飞 杜世昌[2] DENG Yafei;DU Shichang(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Lab of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学机械与动力工程学院,上海200240 [2]上海交通大学机械系统与振动国家重点实验室,上海200240
出 处:《华中科技大学学报(自然科学版)》2022年第6期68-73,共6页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:浙江省宁波市重大科技攻关暨“揭榜挂帅”项目(2021Z093)。
摘 要:为了解决在开放集下的未知故障迁移问题,提出了基于理论边界优化的渐进式迁移学习网络.首先,对迁移学习模型的误差边界进行了分析,为模型优化提供理论指导;其次,设计基于对抗网络的双辨别器识别未知故障数据,通过粗辨别器输出相似性排序为精细辨别器进一步划分决策边界;最后,通过渐进式辨别器的输出对目标域样本和源域样本进行加权分布匹配.为了全面评估所提出模型的鲁棒性,设计了4种不同程度域偏移的故障迁移案例进行验证,实验结果表明:模型的平均类内识别精度为96.3%,相比其他迁移学习模型在不同开放度差异下表现出更优的诊断效果.To address the open-set transfer learning with unknown faults,a progressive transfer learning network with theoretical bound was proposed in this paper. Firstly,the error upper bound of the transfer learning model was analyzed,which provided a theoretical basis for model optimization. Secondly,a two-stage adversarial learning module was designed to separate unknown samples,where the similarity obtained from the coarse discriminator was fed into the fine discriminator to further divide the decision boundary. Finally,the target and source domain samples were matched by weighted distribution through the output of the progressive discriminator.In order to comprehensively evaluate the robustness of the proposed model,four diagnosis transfer cases with different domain shifts were designed.The experimental results show that the average intra-class classification accuracy of the proposed model is 96.3%,which shows better diagnostic performance under different openness variances compared with other transfer learning models.
关 键 词:智能机械诊断 迁移学习 机床 对抗网络 开放集 理论误差边界
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TH133.3[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7