检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU Guohao HE Bingshou
机构地区:[1]Key Laboratory of the Ministry of Education for Seafloor Science and Detection Technology,Ocean University of China,Qingdao 266100,China [2]Functional Laboratory of Marine Mineral Resources Evaluation and Exploration Technology,Qingdao National Laboratoryof Marine Science and Technology,Qingdao 266100,China
出 处:《Journal of Ocean University of China》2022年第4期849-860,共12页中国海洋大学学报(英文版)
基 金:The study is supported by the National Natural Science Foundation of China(No.41674118);the Fundamental Research Funds for the Central Universities of China(No.201964017).
摘 要:In elastic-wave reverse-time migration(ERTM),the reverse-time reconstruction of source wavefield takes advantage of the computing power of GPU,avoids its disadvantages in disk-access efficiency and reading and writing of temporary files,and realizes the synchronous extrapolation of source and receiver wavefields.Among the existing source wavefield reverse-time reconstruction algorithms,the random boundary algorithm has been widely used in three-dimensional(3D)ERTM because it requires the least storage of temporary files and low-frequency disk access during reverse-time migration.However,the existing random boundary algorithm cannot completely destroy the coherence of the artificial boundary reflected wavefield.This random boundary reflected wavefield with a strong coherence would be enhanced in the cross-correlation image processing of reverse-time migration,resulting in noise and fictitious image in the migration results,which will reduce the signal-to-noise ratio and resolution of the migration section near the boundary.To overcome the above issues,we present an ERTM random boundary-noise suppression method based on generative adversarial networks.First,we use the Resnet network to construct the generator of CycleGAN,and the discriminator is constructed by using the PatchGAN network.Then,we use the gradient descent methods to train the network.We fix some parameters,update the other parameters,and iterate,alternate,and continuously optimize the generator and discriminator to achieve the Nash equilibrium state and obtain the best network structure.Finally,we apply this network to the process of reverse-time migration.The snapshot of noisy wavefield is regarded as a 2D matrix data picture,which is used for training,testing,noise suppression,and imaging.This method can identify the reflected signal in the wavefield,suppress the noise generated by the random boundary,and achieve denoising.Numerical examples show that the proposed method can significantly improve the imaging quality of ERTM.
关 键 词:random boundary reverse-time migration generative adversarial network noise suppression
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157