检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴凡[1] 许冰清 杨冰 WU Fan;XU Bing-qing;YANG Bing(School of Management Science&Engineering,Anhui University of Technology,Maanshan 243032,China)
机构地区:[1]安徽工业大学管理科学与工程学院,安徽马鞍山243032
出 处:《哈尔滨商业大学学报(自然科学版)》2022年第4期435-441,共7页Journal of Harbin University of Commerce:Natural Sciences Edition
基 金:安徽省自然科学基金(2008085QG335)。
摘 要:考虑到城市内涝道路受损等因素,构建了车辆调度成本、时间惩罚成本和风险成本同时最小化的多目标优化调度模型.为了求解满足约束的最优调度方案,设计了一种改进的人工蜂群算法,引入自适应维度更新、全局搜索和混沌搜索更新策略,提高基本人工蜂群算法的求解精度和稳定性等性能.算例仿真结果表明,改进算法与标准算法相比,具有更好的寻优性能,可提供更优的调度方案.The factors such as destroyed road were considered,and a multi-objective scheduling model with minimal vehicle scheduling costs,time penalty costs and risk costs was build.In order to obtain the optimal scheduling solution,an improved artificial bee colony algorithm was designed.The search-update strategy was combined with adaptively dimensional update,global search and chaotic search,to improve the solution accuracy and stability of basic artificial bee colony algorithm.The simulation results showed that compared with the basic algorithm,the improved algorithm has better optimization performance and provides a better scheduling solution.
关 键 词:城市内涝 人工蜂群算法 自适应 多目标优化 城市应急 车辆路径优化
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3