巧用极化恒等式 妙解动态几何题  

在线阅读下载全文

作  者:张侣 胡江丽 

机构地区:[1]重庆市忠县中学校

出  处:《中学数学(高中版)》2022年第8期67-69,共3页

摘  要:平面向量是高中数学的基本内容,具有鲜明的独特性质(代数与几何的纽带),现已成为人们研究的重点对象.文献[1]表明极化恒等式建立了数量积与几何长度(数量)之间的联系,作为代数与几何的桥梁,具有化动(动点)为定(定点)、化动(动态)为静(静态)、化曲(曲线)为直(直线)、化普通为特殊之功效,应用十分灵活.文献[2]也举例讨论了极化恒等式在部分解题中的应用.文献[3]以近几年高考试题、江苏省市级统考试题为例,对极化恒等式在数量积问题中的应用进行归纳剖析,探索其解题规律.涉及动态几何中向量数量积的问题,运用常规方法很难找到求解问题的突破口,因而借助极化恒等式来求解就显得尤为重要.

关 键 词:高中数学 数量积 平面向量 解题规律 动态几何 高考试题 极化恒等式 

分 类 号:G634.6[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象