机构地区:[1]Department of Chemical and Biological Engineering,The Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China [2]Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China [3]Jiangsu Key Laboratory for Chemistry of Low‐Dimension Materials,Huaiyin Normal University,Huaian 223300,Jiangsu,China [4]Energy Institute,and Chinese National Engineering Research Center for Control&Treatment of Heavy Metal Pollution,The Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China
出 处:《Chinese Journal of Catalysis》2022年第7期1687-1696,共10页催化学报(英文)
基 金:香港特别行政区研究资助(16310419,16309418,16304821);香港特别行政区创新及科技基金(ITC-CNERC14EG03);低维材料化学江苏重点实验室(JSKC19016).
摘 要:The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications.二氧化碳电化学还原(CO_(2)RR)制备碳氢化合物是一项极具应用前景的技术.该技术不仅可以有效减少二氧化碳在大气中的积累,还可以储存可再生能源.然而,由于现有的CO_(2)RR电催化剂的活性和法拉第效率较低,难以实现大规模应用.离子液体电解质可以有效提高CO_(2)RR的选择性,但成本太高,将离子液体固定在异相电催化剂的孔洞中可以大幅减少离子液体的用量.本文设计了一种混合HKUST-1金属-有机框架(MOF)-氟化咪唑基室温离子液体的电催化剂,将1-丁基-3-甲基咪唑六氟磷酸盐([BMIM][PF6])和1-乙基-3-甲基咪唑四氟硼酸盐([EMIM][BF_(4)])室温离子液体在真空氛围中被负载到水热合成的HKUST-1微粒孔隙中形成复合催化剂,该催化剂可以选择性地将CO_(2)还原为CH_(4).X射线光电子能谱(XPS)结果表明,室温离子液体和HKUST-1 MOF的Cu中心之间存在明显的电子相互作用,其中低氧化态的Cu比例较高.X射线衍射(XRD)和透射电子显微镜(TEM)结果表明,室温离子液体的负载没有显著改变MOF的晶体结构及其形态.与原始的HKUST-1电催化剂相比,HKUST-1/[BMIM][PF_(6)]混合催化剂的CH_(4)法拉第效率(FE)明显提高.在‒1.13 V vs.RHE时,最大CH_(4) FE和分电流密度分别为65.5%和11.5 mA cm^(-2).同时,混合催化剂的析氢反应(HER)活性显著降低,在‒1.09 V vs.RHE时H_(2) FE只有6.8%.稳定性测试结果表明,CH_(4) FE可以稳定保持在50%以上.由于在HKUST-1/[BMIM]和HKUST-1/[EMIM][BF_(4)]混合催化剂的测试中观察到了类似的促进CH_(4)和抑制HER的趋势,可以推断室温离子液体的疏水性在提高CO_(2)RR选择性方面只起到次要作用.电解后催化剂表面形成纳米级铜簇,可能是真正的活性位点.基于实验结果,本文还模拟了表面吸附了[BMIM][PF_(6)]分子的Cu(110)晶面,密度泛函理论(DFT)计算结果表明,在表面存在室温离子液体的情况下,Cu的分态密度(PDOS)峰正移,表明Cu可以与
关 键 词:CO_(2)electroreduction METHANE Room temperature ionic liquid Metal organic framework Catalyst design DFT calculation
分 类 号:TQ221.11[化学工程—有机化工] TQ426[环境科学与工程—环境工程] X701
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...