机构地区:[1]College of Physics and Materials Science,Tianjin Normal University,Tianjin 300387,China [2]Institute of Information Technology,Shenzhen Institute of Information Technology,Shenzhen 518172,China [3]Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education,School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China [4]Institute for Superconducting&Electronic Materials,Australian Institute of Innovative Materials,University of Wollongong,Innovation Campus,Squires Way,North Wollongong,NSW 2522,Australia
出 处:《Chinese Journal of Catalysis》2022年第7期1761-1773,共13页催化学报(英文)
基 金:国家自然科学基金(22179093,21905202,22002107);天津市高等学校创新团队计划(TD13-5077);天津师范大学应用开发基金(135202XK1702);龙岗区第三代半导体材料和器件项目(PT2020D003);广东省第三代半导体工程技术发展中心项目(2020GCZX007);深圳职业信息技术学院项目(SZIIT2021KJ020,SZIIT2020KJ006);澳大利亚研究理事会探索项目(DP200100365,DP210102215).
摘 要:Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐NRR)under ambient conditions is considered a promising alternative to the H‐B process and has been attracting increasing attention owing to its associated energy effi‐ciency and environmentally friendly characteristics.The performance of a PEC‐NRR system,such as the NH_(3) yield,selectivity,and stability,is essentially determined by its key component,the photo‐cathode.In this review,the latest progress in the development of photocathode materials employed in PEC‐NRR is evaluated.The fundamental mechanisms and essential features required for the PEC‐NRR are introduced,followed by a discussion of various types of photocathode materials,such as oxides,sulfides,selenides,black silicon,and black phosphorus.In particular,the PEC‐NRR reac‐tion mechanisms associated with these photocathode materials are reviewed in detail.Finally,the present challenges and future opportunities related to the further development of PEC‐NRR are also discussed.This review aims to improve the understanding of PEC‐NRR photocathode materials while also shedding light on the new concepts and significant innovations in this field.氨是一种重要的化工产品和非碳基能源载体,全球年产量已达2亿吨.目前,氨的工业化生产主要依赖Haber-Bosch工艺,其能耗高且污染严重.因此亟需开发一种低碳环保的替代工艺以实现氨合成工业的可持续发展.现阶段主要有三种比较有发展潜力的新型氨合成工艺,即电催化、光催化和光电化学氮还原产氨技术.这些氮还原技术都可在温和环境条件下合成氨,具有能耗低、零排放等优势,被认为是替代Haber-Bosch工艺的有效途径,受到广泛关注.其中,与前两者相比,光电化学氮还原具有明显优势:与电催化氮还原相比,光电化学氮还原能够实现从太阳能到化学能的直接转化,具有较高的能量转化效率;而与光催化氮还原相比,光电化学氮还原系统中的外加偏压能够加速激子分离,有效提高太阳能到化学能的转化效率.在光电化学氮还原过程中,其核心组件光电阴极材料的性能决定了反应的氨产量、选择性和稳定性.本文总结了近年来光电化学氮还原领域的最新进展,特别是其中涉及的光阴极材料.首先,详细介绍了光电化学氮还原所涉及的基本原理和面临的主要瓶颈.其次,逐一总结了已报道的用于光电化学氮还原的光电阴极材料,包括氧化物(氧化铜、氧化亚铜、碘氧化铋、溴化氧铋和矾酸铋)、硫化物(硫化铜、硫化铟和硫化钼)、硒化物(硒化钼)、黑硅和黑磷等,并特别对其中所涉及的催化机理问题作了重点分析.最后,对该领域面临的未来发展方向和可能的解决方案提出了建议.其中,开发具有合适的能带结构、快速的激子分离、高的催化活性和选择性以及优异的稳定性的光阴极材料是光电化学氮还原技术走向实际应用的关键.此外,为了实现上述目标,本文还提出了八点切实可行的技术方案:高效的共催化剂、单原子和多原子团簇催化剂、异质结工程、三维有序结构、保护层�
关 键 词:Nitrogen reduction PHOTOELECTROCHEMISTRY PHOTOCATHODE SUSTAINABILITY Carbon neutrality
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...