机构地区:[1]Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,School of Chemical and Materials Engineering,Jiangnan University,Wuxi 214122,Jiangsu,China [2]International Joint Research Center for Photo‐responsive Molecules and Materials,Jiangnan University,Wuxi 214122,Jiangsu,China [3]Department of Chemistry,Tsinghua University,Beijing 100084,China
出 处:《Chinese Journal of Catalysis》2022年第7期1774-1804,共31页催化学报(英文)
基 金:国家自然科学基金(22136002,22172064,21806059,21676123).
摘 要:Photocatalytic water splitting based on semiconductor photocatalysts is a promising approach for producing carbon‐neutral,sustainable,and clean H_(2) fuel.Cocatalyst loading,which is an appealing strategy,has been extensively employed to improve the photocatalytic efficiency semiconductors.In view of the high cost and rare preservation of noble metal cocatalysts that significantly hinder their utilization for large‐scale energy production,various cocatalysts comprising earth‐abundant ele‐ments have been developed as noble‐metal‐free candidates using different methods to boost pho‐tocatalytic water splitting.Among these preparation strategies,photodeposition has attracted tre‐mendous attention in the deposition of earth‐abundant cocatalysts owing to its simplicity and mod‐erate availability,improved interfacial charge separation and transfer,and abundant active sites on the surface.In this review,we first summarize the deposition principles,deposition advantages,categories of cocatalysts,roles of cocatalysts,influencing factors,modification strategies,and design considerations in the photodeposition of earth‐abundant cocatalysts.The photodeposited earth‐abundant cocatalysts for the photocatalytic H_(2) evolution half reaction,photocatalytic O_(2) evo‐lution half reaction,and overall photocatalytic water splitting are discussed.Finally,some perspec‐tives on the challenges and possible future directions for the photodeposition of earth‐abundant cocatalysts in photocatalytic water splitting are presented.氢能是实现碳中和目标的关键能源之一.光催化分解水制氢是一项绿色制氢技术,自从20世纪80年代日本科学家Honda和Fujishima首次发现了TiO_(2)电极上的光电解水产氢以来,该技术已成为了全世界关注的研究方向.负载助催化剂能够提高电荷分离、降低过电势/活化能和加快表面反应,作为一种有效的改性策略被广泛地用于提高光催化分解水制氢效率.助催化剂的性能在很大程度上依赖其沉积方式,光沉积有助于加快光生电子-空穴对从光催化剂向助催化剂的转移,大幅改善了电荷的分离和传输效率,显著提升了催化剂的光催化性能.同时,该策略操作简单、条件温和以及无需额外添加氧化还原试剂来实现助催化剂的生成.从目前报道的助催化剂光沉积研究中可以发现,贵金属基助催化剂的光沉积在光催化分解水反应中已被广泛研究,然而贵金属价格昂贵、储量稀少,极大限制了其在大规模能源生产中的应用.为此,光沉积地球储量丰富的非贵金属助催化剂受到了研究者高度重视,近年来也取得了一些重要的进展,但尚未有综述进行报道.本文综述了近年来光沉积非贵金属光催化分解水助催化剂的研究进展.总结了非贵金属水分解助催化剂光沉积的基础,包括光沉积的原理、光沉积的优势、助催化剂的种类、助催化剂的作用、影响光沉积的因素、光沉积改性策略以及设计助催化剂光沉积的考虑因素.从制备方法、催化性能和作用机制等方面,详细讨论了不同非贵金属助催化剂光沉积在光催化分解水中的应用,包括制氢半反应(过渡金属、过渡金属硫化物、过渡金属磷化物、过渡金属氧化物和过渡金属氢氧化物)、制氧半反应(钴基氧化物、磷酸盐和羟基氧化物以及其他过渡金属氧化物)和全分解水反应(沉积产氢助催化剂、沉积产氧助催化剂和产氢-产氧双助催化剂共沉积).�
关 键 词:PHOTODEPOSITION Noble‐metal‐free cocatalyst PHOTOCATALYSIS Water splitting
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...