检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴学文[1] 廖婧贤 Wu Xuewen;Liao Jingxian(School of Computer and Information,Hohai University,Nanjing 211100,China)
机构地区:[1]河海大学计算机与信息学院,江苏南京211100
出 处:《系统仿真学报》2022年第7期1468-1481,共14页Journal of System Simulation
摘 要:综合考虑时延、能耗和计算资源成本,构建云边协同系统中的效用最大化问题,并将其分解为计算资源分配、上行功率分配和任务卸载策略三个子问题。提出一种基于博弈论的资源分配和任务卸载方案(game-based resource allocation and task offloading,GRATO)以分别解决上述子问题。利用凸优化条件求得计算资源分配最优解;设计一种低复杂度的上行功率分配方法用于降低无线干扰;针对任务卸载策略优化问题,提出一种基于博弈论的分布式任务卸载算法(gamebased distributed task offloading algorithm,GDTOA)。仿真结果表明,GRATO方案在时延和能耗方面的性能优于其他方案,还可以感知用户的优先级,使紧急用户具有更高的效用和更低的时延。Considering the delay,energy consumption and computing resource cost,the utility maximization problem in collaborative cloud-edge system is constructed,and divided into three subproblems:computing resource allocation,uplink power allocation and task offloading strategy.A game-based resource allocation and task offloading(GRATO)scheme is proposed to solve those subproblems.The optimal solution of computing resource allocation is obtained by using convex optimization conditions;a low complexity uplink power allocation method is designed to reduce wireless interfere;a game-based distributed task offloading algorithm(GDTOA)is proposed to optimize the task offloading strategy.Simulation results show that the performance of GRATO is better than other schemes on delay and energy consumption,and it can sense the priority of users,resulting in higher utility and lower latency for emergency users..
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30