基于深度学习的SAR目标识别DSP设计  被引量:2

Deep learning-based SAR target recognition on DSP

在线阅读下载全文

作  者:何涛 施慧莉 李大亮 HE Tao;SHI Hui-li;LI Da-liang(AVIC Leihua Electronic Technology Research Institute,Wuxi 214063,China)

机构地区:[1]中国航空工业集团公司雷华电子技术研究所,江苏无锡214063

出  处:《计算机工程与科学》2022年第8期1357-1363,共7页Computer Engineering & Science

摘  要:SAR图像目标识别主要针对桥梁、机场等战略军事目标以及飞机、坦克、汽车等战术目标,进行精确的识别分类及定位,是SAR图像解译的重要一环。首先,构建C6678的卷积神经网络主要处理层,然后结合C6678的处理及存储特性,对卷积层和网络调度进行优化设计,完成了YOLOv3-TINY目标识别网络在C6678上的设计实现方法。该方法能够对常用卷积神经网络模型进行重构及修改,解决了C6678等多核DSP处理平台运行深度学习网络的难题。实验结果表明,该方法在检测性能上与GPU一致,考虑到机载SAR的实时图像帧率,虽然该方法在C6678的实时性能相对GPU还有较大差距,但其能够满足机载SAR实时处理需求。SAR image target recognition mainly aims at strategic military targets such as bridges and airports,as well as tactical targets such as aircraft,tanks,and automobiles.Accurate identification,classification and positioning is an important part of SAR image interpretation.Firstly,the main processing layer of the convolutional neural network based on C6678 is constructed.Secondly,the processing and storage characteristics of C6678 are combined to optimize the design of the convolutional layer and network scheduling.Finally,a design and implementation method of the YOLOv3-TINY target recognition network on C6678 is completed.This method can reconstruct and modify common convolutional neural network models,and solves the problem of running deep learning networks on multi-core processing platforms such as C6678.The experimental results show that the method is consistent with GPU in detection performance.Considering the real-time image frame rate of airborne SAR,although the real-time performance of this method on C6678 is far from that of GPU,it can meet the real-time processing requirements of airborne SAR.

关 键 词:SAR 目标识别 YOLO DSP 深度学习 

分 类 号:TN957[电子电信—信号与信息处理] TP391.41[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象