MHGCN:Multiview Highway Graph Convolutional Network for Cross-Lingual Entity Alignment  被引量:6

在线阅读下载全文

作  者:Jianliang Gao Xiangyue Liu Yibo Chen Fan Xiong 

机构地区:[1]School of Computer Science and Engineering,Central South University,Changsha 410083,China [2]Information and Communication Branch,State Grid Hunan Electric Power Company Limited,Changsha 410004,China

出  处:《Tsinghua Science and Technology》2022年第4期719-728,共10页清华大学学报(自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China(No.61873288);Research on Key Technologies and Application for the Time Series Data of State Grid Hunan Electirc Power Company(No.5216A00036);the Hunan Key Laboratory for Internet of Things in Electricity(No.2019TP1016);CAAI-Huawei Mind Spore Open Fund。

摘  要:Knowledge graphs(KGs)provide a wealth of prior knowledge for the research on social networks.Crosslingual entity alignment aims at integrating complementary KGs from different languages and thus benefits various knowledge-driven social network studies.Recent entity alignment methods often take an embedding-based approach to model the entity and relation embedding of KGs.However,these studies mostly focus on the information of the entity itself and its structural features but ignore the influence of multiple types of data in KGs.In this paper,we propose a new embedding-based framework named multiview highway graph convolutional network(MHGCN),which considers the entity alignment from the views of entity semantic,relation semantic,and entity attribute.To learn the structural features of an entity,the MHGCN employs a highway graph convolutional network(GCN)for entity embedding in each view.In addition,the MHGCN weights and fuses the multiple views according to the importance of the embedding from each view to obtain a better entity embedding.The alignment entities are identified based on the similarity of entity embeddings.The experimental results show that the MHGCN consistently outperforms the state-of-the-art alignment methods.The research also will benefit knowledge fusion through cross-lingual KG entity alignment.

关 键 词:knowledge graph entity alignment graph convolutional network 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.1[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象