检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ahmad Taher Azar Mustafa Samy Elgendy Mustafa Abdul Salam Khaled M.Fouad
机构地区:[1]Faculty of Computers and Artificial Intelligence,Benha University,Benha,13518,Egypt [2]College of Computer and Information Sciences,Prince Sultan University,Riyadh,11586,Saudi Arabia [3]Faculty of Computer Studies,Arab Open University,Cairo,Egypt [4]Faculty of Information Technology and Computer Science,Nile University,Shikh Zaid,Egypt
出 处:《Computers, Materials & Continua》2022年第10期1087-1108,共22页计算机、材料和连续体(英文)
摘 要:Big data is a vast amount of structured and unstructured data that must be dealt with on a regular basis.Dimensionality reduction is the process of converting a huge set of data into data with tiny dimensions so that equal information may be expressed easily.These tactics are frequently utilized to improve classification or regression challenges while dealing with machine learning issues.To achieve dimensionality reduction for huge data sets,this paper offers a hybrid particle swarm optimization-rough set PSO-RS and Mayfly algorithm-rough set MA-RS.A novel hybrid strategy based on the Mayfly algorithm(MA)and the rough set(RS)is proposed in particular.The performance of the novel hybrid algorithm MA-RS is evaluated by solving six different data sets from the literature.The simulation results and comparison with common reduction methods demonstrate the proposed MARS algorithm’s capacity to handle a wide range of data sets.Finally,the rough set approach,as well as the hybrid optimization techniques PSO-RS and MARS,were applied to deal with the massive data problem.MA-hybrid RS’s method beats other classic dimensionality reduction techniques,according to the experimental results and statistical testing studies.
关 键 词:Dimensionality reduction metaheuristics optimization algorithm MAYFLY particle swarm optimizer feature selection
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56