On-line Recognition of Abnormal Patterns in Bivariate Autocorrelated Process Using Random Forest  

在线阅读下载全文

作  者:Miao Xu Bo Zhu Chunmei Chen Yuwei Wan 

机构地区:[1]College of Mechanical and Electrical Engineering,Kunming University of Science&Technology,Kunming,650500,China [2]School of Engineering,Cardiff University,Cardiff,CF243AA,UK

出  处:《Computers, Materials & Continua》2022年第10期1707-1722,共16页计算机、材料和连续体(英文)

基  金:This research was financially supported by the National Natural Science Foundation of China(52065033).

摘  要:It is not uncommon that two or more related process quality characteristics are needed to be monitored simultaneously in production process for most of time.Meanwhile,the observations obtained online are often serially autocorrelated due to high sampling frequency and process dynamics.This goes against the statistical I.I.D assumption in using the multivariate control charts,which may lead to the performance of multivariate control charts collapse soon.Meanwhile,the process control method based on pattern recognition as a non-statistical approach is not confined by this limitation,and further provide more useful information for quality practitioners to locate the assignable causes led to process abnormalities.This study proposed a pattern recognition model using Random Forest(RF)as pattern model to detect and identify the abnormalities in bivariate autocorrelated process.The simulation experiment results demonstrate that the model is superior on recognition accuracy(RA)(97.96%)to back propagation neural networks(BPNN)(95.69%),probability neural networks(PNN)(94.31%),and support vector machine(SVM)(97.16%).When experimenting with simulated dynamic process data flow,the model also achieved better average running length(ARL)and standard deviation of ARL(SRL)than those of the four comparative approaches in most cases of mean shift magnitude.Therefore,we get the conclusion that the RF model is a promising approach for detecting abnormalities in the bivariate autocorrelated process.Although bivariate autocorrelated process is focused in this study,the proposed model can be extended to multivariate autocorrelated process control.

关 键 词:Random Forest bivariate autocorrelated process pattern recognition average run length 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象