检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Prasanalakshmi Balaji B.Sri Revathi Praveetha Gobinathan Shermin Shamsudheen Thavavel Vaiyapuri
机构地区:[1]Department of Computer Science,King Khalid University,Saudi Arabia [2]School of Electrical Engineering,Vellore Institute of Technology,India [3]Department of Computer Science,Jazan University,Saudi Arabia [4]College of Computer Engineering and Science,Prince Sattam bin Abdulaziz University,Saudi Arabia
出 处:《Computers, Materials & Continua》2022年第11期2275-2291,共17页计算机、材料和连续体(英文)
基 金:This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(RGP.2/202/43).
摘 要:Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system.Despite deep learning has proved to be superior to previous approaches that depend on handcrafted features;it remains difficult to implement because of the high intra-class variance and inter-class similarity generated by the wide range of imaging modalities and clinical diseases.The Internet of Things(IoT)in healthcare systems is quickly becoming a viable alternative for delivering high-quality medical treatment in today’s e-healthcare systems.In recent years,the Internet of Things(IoT)has been identified as one of the most interesting research subjects in the field of health care,notably in the field of medical image processing.For medical picture analysis,researchers used a combination of machine and deep learning techniques as well as artificial intelligence.These newly discovered approaches are employed to determine diseases,which may aid medical specialists in disease diagnosis at an earlier stage,giving precise,reliable,efficient,and timely results,and lowering death rates.Based on this insight,a novel optimal IoT-based improved deep learning model named optimization-driven deep belief neural network(ODBNN)is proposed in this article.In context,primarily image quality enhancement procedures like noise removal and contrast normalization are employed.Then the preprocessed image is subjected to feature extraction techniques in which intensity histogram,an average pixel of RGB channels,first-order statistics,Grey Level Co-Occurrence Matrix,Discrete Wavelet Transform,and Local Binary Pattern measures are extracted.After extracting these sets of features,the May Fly optimization technique is adopted to select the most relevant features.The selected features are fed into the proposed classification algorithm in terms of classifying similar input images into similar classes.The proposed model is evaluated in terms of accuracy,precision,recall,and f-measure.The investigation evident the performa
关 键 词:Deep belief neural network mayfly optimization gaussian filter contrast normalization grey level variance local binary pattern discrete wavelet transform
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229