Key-Value Store Coupled with an Operating System for Storing Large-Scale Values  

在线阅读下载全文

作  者:Jeonghwan Im Hyuk-Yoon Kwon 

机构地区:[1]Graduate School of Data Science,Seoul National University of Science and Technology,Seoul,Korea [2]Department of Industrial Engineering,Graduate School of Data Science,Research Center for Electrical and Information Science,Seoul National University of Science and Technology,Seoul,Korea

出  处:《Computers, Materials & Continua》2022年第11期3333-3350,共18页计算机、材料和连续体(英文)

摘  要:The key-value store can provide flexibility of data types because it does not need to specify the data types to be stored in advance and can store any types of data as the value of the key-value pair.Various types of studies have been conducted to improve the performance of the key-value store while maintaining its flexibility.However,the research efforts storing the large-scale values such as multimedia data files(e.g.,images or videos)in the key-value store were limited.In this study,we propose a new key-value store,WR-Store++aiming to store the large-scale values stably.Specifically,it provides a new design of separating data and index by working with the built-in data structure of the Windows operating system and the file system.The utilization of the built-in data structure of the Windows operating system achieves the efficiency of the key-value store and that of the file system extends the limited space of the storage significantly.We also present chunk-based memory management and parallel processing of WR-Store++to further improve its performance in the GET operation.Through the experiments,we show that WR-Store++can store at least 32.74 times larger datasets than the existing baseline key-value store,WR-Store,which has the limitation in storing large-scale data sets.Furthermore,in terms of processing efficiency,we show that WR-Store++outperforms not only WR-Store but also the other state-ofthe-art key-value stores,LevelDB,RocksDB,and BerkeleyDB,for individual key-value operations and mixed workloads.

关 键 词:Key-value stores large-scale values chunk-based memory management parallel processing 

分 类 号:TP333[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象