领域相关的数学文本语义抽取  

Semantic extraction of domain-dependent mathematical text

在线阅读下载全文

作  者:陈肖宇 王伟[1,2] CHEN Xiaoyu;WANG Wei(School of Mathematical Sciences,Beihang University,Beijing 100191,China;Key Laboratory of Mathematics,Informatics and Behavioral Semantics,Ministry of Education(Beihang University),Beijing 100191,China;Beijing Advanced Innovation Center for Big Data and Brain Computing,Beihang University,Beijing 100191,China)

机构地区:[1]北京航空航天大学数学科学学院,北京100191 [2]数学、信息与行为教育部重点实验室(北京航空航天大学),北京100191 [3]北京航空航天大学大数据科学与脑机智能高精尖创新中心,北京100191

出  处:《计算机应用》2022年第8期2386-2393,共8页journal of Computer Applications

摘  要:针对科技领域文档语义信息获取不充分的问题,提出一套基于规则的数学领域相关文本的语义抽取方法。首先从文本中提取领域概念并实现数学实体与领域概念之间的语义映射;然后对数学符号的上下文进行分析,获取数学符号的实体指代或文字描述,进而抽取其语义;最后基于已抽取的数学符号语义实现表达式的语义分析。以线性代数文本为研究实例,构建了一个语义标注数据集并进行实验,实验结果表明所提方法对标识符、线性代数实体以及表达式的语义抽取具有93%以上的精确率和91%以上的召回率。Aiming at the problem of insufficient acquisition of document semantic information in the field of science and technology,a set of rule-based methods for extracting semantics from domain-dependent mathematical text were proposed.Firstly,domain concepts were extracted from the text and semantic mapping between mathematical entities and domain concepts were realized.Secondly,through context analysis for mathematical symbols,entity mentions or corresponding text descriptions of mathematical symbols were obtained and the semantics of the symbols were extracted.Finally,the semantic analysis of expressions was completed based on the extracted semantics of mathematical symbols.Taking linear algebra texts as research examples,a semantic tagging dataset was constructed for experiments.Experimental results show that the proposed methods achieve a precision higher than 93%and a recall higher than 91%on semantic extraction of identifiers,linear algebra entities and expressions.

关 键 词:语义抽取 实体指代 上下文分析 数学语言处理 数学文本理解 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象