检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申晋祥[1] 鲍美英[1] SHEN Jin-Xiang;BAO Mei-Ying(College of Computer and Network Engineering,Shanxi Datong University,Datong 037009,China)
机构地区:[1]山西大同大学计算机与网络工程学院,大同037009
出 处:《计算机系统应用》2022年第8期314-318,共5页Computer Systems & Applications
基 金:国家自然科学基金(11971277);山西省教育科学“十三五”规划项目(GH-18045);山西大同大学校级科研专项项目(2020YGZX016);山西大同大学校级科研项目(2020K10)。
摘 要:针对基于位置社交网络中的兴趣点推荐存在用户签到数据稀疏、评论文本信息利用不充分、推荐准确度不高等问题,提出一种基于卷积神经网络的评论文本兴趣点推荐模型(RT-CNN).首先采用高斯函数利用邻近地理位置加权方法填补矩阵分解模型中缺少的位置信息,预测用户对未签到位置的潜在兴趣.然后通过卷积神经网络处理评论文本信息挖掘潜在特征,深度提取用户情感倾向,使用Softmax逻辑回归函数获得评论文本与用户和位置兴趣点潜在特征相关的概率,通过对目标函数的求解提取用户和位置潜在特征向量.最后融合签到行为、地理位置影响、用户情感倾向、用户潜在特征和位置兴趣点潜在特征进行兴趣点推荐.在公开的Foursquare网站纽约(NYC)和洛杉矶(LA)两个真实签到数据集进行实验,结果表明RT-CNN模型相比其他先进的兴趣点推荐模型提高了精确率和召回率,具有更好的推荐性能.In view of the sparse user check-in data,underutilization of review text information,and low accuracy of pointof-interest recommendation in location-based social networks,this study proposes a point-of-interest recommendation model based on review texts and the convolutional neural network(CNN),or an RT-CNN point-of-interest recommendation model for short.To start with,the Gaussian function and adjacent geographical location weighting are used to fill in the missing location information in the matrix decomposition model and thereby predict the user’s potential interest in unchecked locations.Then,review text information is processed by the convolutional neural network to mine potential features and ultimately to extract the user’s emotional tendencies in depth.The Softmax logic regression function is utilized to obtain the probabilities of the review text related to the potential features of a user and a point-ofinterest location,and potential feature vectors of the user and the location are extracted by solving the objective function.Finally,the check-in behavior,geographical location influence,user emotion tendencies,user potential features,and potential features of point-of-interest locations are integrated to recommend points-of-interest.Experiments are carried out on two real check-in datasets,namely NYC and LA,on the public website Foursquare.The results show that compared with other state-of-the-art point-of-interest recommendation models,the RT-CNN model improves the accuracy rate and the recall rate and has better recommendation performance.
关 键 词:卷积神经网络(CNN) 评论文本 兴趣点 推荐算法 社交网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145