检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王雪 黄建华[1,2] 蒙钰天 孙希延[1,2] WANG Xue;HUANG Jianhua;MENG Yutian;SUN Xiyan(Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China;National&Local Joint Engineering Research Center of Satellite Navigation and Location Service,Guilin University of Electronic Technology,Guilin 541004,China;Land and Information Research Center of Guilin,Guilin 541004,China)
机构地区:[1]桂林电子科技大学广西精密导航技术与应用重点实验室,广西桂林541004 [2]桂林电子科技大学卫星导航与位置服务国家与地方联合工程研究中心,广西桂林541004 [3]桂林市国土资源研究中心,广西桂林541004
出 处:《地理信息世界》2022年第4期30-34,共5页Geomatics World
基 金:桂林市科技局桂林市国家可持续发展议程创新示范区建设重点项目(20190219-1)。
摘 要:传统方法对长焦距摄像头影像进行变化区域提取时,由于光照、摄像头抖动等影响,导致像素点不能精确配准,变化检测不能准确识别建筑物变化的问题,本文提出基于深度学习的监控建筑影像变化检测算法。首先利用图像相似性进行筛选,粗略提取变化区域图像;再利用Faster R-CNN网络对变化区域图像进行建筑物识别与提取。通过桂林西站图像采集试验,结果表明本文方法相比差值法提取变化区域进行变化检测,虚检率降低0.126,漏检率降低0.518,正确率提高0.124,完整率提高0.519,质量提高0.12,在城乡结合部由于建筑物与背景区别更大,具有更好的检测结果和泛化能力。In order to solve the problem that the pixels can not be accurately registered and the change detection can’t accurately identify the building changes due to the environmental effects,such as illumination and camera jitter when the tradition method extracts the change area of the long focal length camera image,a monitoring building image change detection algorithm based on deep learning is proposed.Firstly,the image similarity is used to filter and roughly extract the change area image.Then,Faster R-CNN network is used to recognize and extract buildings from the changed area image.The experimental results using the images collected from Guilin West Station show that compared with the difference methods to extract the change area for change detection,the proposed method reduces the false detection rate reduce by 0.126,and the omission rate cut down 0.518,and the accuracy rate increase of 0.124,and the integrity rate improved by 0.519 and the quality by 0.12.The proposed method has better detection results and generalization ability in complex urban and rural environments.
关 键 词:城市监控影像 建筑物变化检测 深度学习 图像相似性
分 类 号:P2[天文地球—测绘科学与技术] TU196[建筑科学—建筑理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.122.83