Optimization of virtual machine placement based on constrained immune memory and immunodominance clone in IaaS cloud mode equipment training  

在线阅读下载全文

作  者:Zhijia Chen Yuanchang Zhu Yanqiang Di Shaochong Feng 

机构地区:[1]Department of Electronic and Optics Mechanical Engineering College Shijiazhuang 050003,P.R.China

出  处:《International Journal of Modeling, Simulation, and Scientific Computing》2017年第1期109-133,共25页建模、仿真和科学计算国际期刊(英文)

基  金:Equipment Pre-research Fund of China under Grant No.9140A04030214JB34058.

摘  要:In infrastructure as a service(IaaS)cloud mode equipment simulated training,to keep the resource utilization ratio in a rational high level,improve the training effect and reduce the system running cost,the problem of training virtual machine(TVM)placement needs to be resolved first.We make analysis to the problem and give the mathematical formulation to the problem.Then,we figure out the principle and target of the TVM placement.Based on above analysis,we propose a constrained immune memory and immunodominance clone(CIMIC)TVM placement optimization algorithm.By reverse optimization of the initial antibody population,the searching range is reduced.The common antibody population and the immunodominance antibody population evolve simultaneously,which realizes the simultaneous progressing of global searching and local searching of solutions.Further,local optimal is avoided by this means.Memory antibody makes ful use of the unfeasible solutions and the diversity of antibody population is maintained.The constraint information of the problem is utilized to improve the optimization effect.Experiment results show that the CIMIC algorithm improves the overall optimization effect of TVM placement,reduces the server number and improves the resource utilization and system stability.

关 键 词:IaaS cloud mode training TVM placement constrained optimization immune memory immunodominance clone 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象