Optimized Deep Learning Model for Fire Semantic Segmentation  

在线阅读下载全文

作  者:Songbin Li Peng Liu Qiandong Yan Ruiling Qian 

机构地区:[1]Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China [2]Loughborough University,Loughborough,LE113TT,United Kingdom

出  处:《Computers, Materials & Continua》2022年第9期4999-5013,共15页计算机、材料和连续体(英文)

基  金:This work was supported in part by the Important Science and Technology Project of Hainan Province under Grant ZDKJ2020010;in part by Frontier Exploration Project Independently Deployed by Institute of Acoustics,Chinese Academy of Sciences under Grant QYTS202015 and Grant QYTS202115.

摘  要:Recent convolutional neural networks(CNNs)based deep learning has significantly promoted fire detection.Existing fire detection methods can efficiently recognize and locate the fire.However,the accurate flame boundary and shape information is hard to obtain by them,which makes it difficult to conduct automated fire region analysis,prediction,and early warning.To this end,we propose a fire semantic segmentation method based on Global Position Guidance(GPG)and Multi-path explicit Edge information Interaction(MEI).Specifically,to solve the problem of local segmentation errors in low-level feature space,a top-down global position guidance module is used to restrain the offset of low-level features.Besides,an MEI module is proposed to explicitly extract and utilize the edge information to refine the coarse fire segmentation results.We compare the proposed method with existing advanced semantic segmentation and salient object detection methods.Experimental results demonstrate that the proposed method achieves 94.1%,93.6%,94.6%,95.3%,and 95.9%Intersection over Union(IoU)on five test sets respectively which outperforms the suboptimal method by a large margin.In addition,in terms of accuracy,our approach also achieves the best score.

关 键 词:Fire semantic segmentation local segmentation errors global position guidance multi-path explicit edge information interaction feature fusion 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象