基于改进YOLOv4的焊接件表面缺陷检测算法  被引量:8

Surface Defect Detection Algorithm of Weldment Based on Improved YOLOv4

在线阅读下载全文

作  者:付思琴 邱涛 王权顺 黄德丰 余华云[1] FU Si-qin;QIU Tao;WANG Quan-shun;HUANG De-feng;YU Hua-yun(School of Computer Science,Yangtze University,Hubei Jingzhou 434023,China;College of Computer Science,Chongqing University,Chongqing 400044,China)

机构地区:[1]长江大学计算机科学学院,湖北荆州434023 [2]重庆大学计算机学院,重庆400044

出  处:《包装工程》2022年第15期23-32,共10页Packaging Engineering

基  金:国家自然科学基金(61440023);中国高校产学研创新基金-新一代信息技术创新项目(2020ITA03012)。

摘  要:目的针对真实复杂的工业场景下焊接件表面缺陷检测精度低、速度慢和图像噪声大等问题,提出一种基于卷积神经网络的改进YOLOv4焊接件表面缺陷检测算法。方法该模型基于YOLOv4算法,首先,考虑到存储和计算资源的限制,使用了轻量级网络GhostNet替换YOLOv4的主干特征提取网络(Backbone)CSPDarknet53;其次,在GhostNet网络结构中嵌入改进的通道注意力机制,能够提高模型的学习能力且减少参数量;最后,引入K–means++聚类算法对焊接件表面缺陷数据集中待检测的标注框宽高进行聚类,使网络模型更容易检测到样本中的缺陷。结果实验结果表明,改进后的YOLOv4算法平均精度(mean Average Precision,mAP)为91.07%,检测速度达到48.11帧/s,模型尺寸为43.2 MB,比原始YOLOv4算法平均精度提升了4.61%,检测速度提高了26.59帧/s,模型尺寸缩减了82.37%。结论所提模型提高了焊接件表面缺陷检测的精度和速度,在工业表面缺陷检测中具有现实意义。The work aims to propose a surface defect detection algorithm improved based on convolutional neural network,so as to solve the problems of low precision,slow speed and large image noise of weldment surface defect de-tection in complex industrial scenes.The model was established based on the YOLOv4 algorithm.Firstly,considering the limitation of storage and computational resources,the lightweight network GhostNet was used to replace the YOLOv4 backbone feature extraction network(Backbone)CSPDarknet53.Secondly,an improved channel attention mechanism was embedded in the GhostNet network structure,which improved the learning ability of the model and re-duced the parameter quantity.Finally,the K-means++clustering algorithm was introduced to cluster the width and height of the labeled frames to be detected in the weldment surface defect dataset,so that the network model could detect the defects in the samples.From the experimental results,the improved YOLOv4 algorithm had an average precision(mean Average Precision,mAP)of 91.07%,a detection speed of 48.11 frame/s,and a model size of 43.2 MB.Compared with the original YOLOv4 algorithm,the detection precision was increased by 4.61%,the detection speed was improved by 26.59%frame/s and the model size was reduced by 82.37%.The proposed model improves the detection precision and speed of weldment surface defect,which is of practical significance in industrial surface defect detection.

关 键 词:焊接件 缺陷检测 YOLOv4 GhostNet K–means++ 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象