Polygonal Finite Element for Two-Dimensional Lid-Driven Cavity Flow  被引量:1

在线阅读下载全文

作  者:T.Vu-Huu C.Le-Thanh H.Nguyen-Xuan M.Abdel-Wahab 

机构地区:[1]Faculty of Civil Engineering,Vietnam Maritime University,484 Lach Tray Str.,Hai Phong,Vietnam [2]Faculty of Civil Engineering and Electricity,Ho Chi Minh City Open University,Vietnam [3]CIRTech Institute,Ho ChiMinh City University of Technology(HUTECH),Ho Chi Minh City,Vietnam [4]Department of Architectural Engineering,Sejong University,209 Neungdongro,Gwangjingu,Seoul,05006,Republic of Korea [5]Soete Laboratory,Faculty of Engineering and Architecture,Ghent University,Technologiepark Zwijnaarde,903,B-9052,Zwijnaarde,Belgium

出  处:《Computers, Materials & Continua》2022年第3期4217-4239,共23页计算机、材料和连续体(英文)

基  金:This work was supported by the VLIR-UOS TEAM Project,VN2017TEA454A 103,‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’funded by the Flemish Government.

摘  要:This paper investigates a polygonal finite element(PFE)to solve a two-dimensional(2D)incompressible steady fluid problem in a cavity square.It is a well-known standard benchmark(i.e.,lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier-Stokes(N-S)equation system.The approximation solutions provided in this research are based on our developed equal-order mixed PFE,called Pe1Pe1.It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique.In this research,to handle the nonlinear problem of N-S,the Picard iteration scheme is applied.Our proposed method’s performance and convergence are validated by several simulations coded by commercial software,i.e.,MATLAB.For this research,the benchmark is executed with variousReynolds numbers up to the maximum Re=1000.All results then numerously compared to available sources in the literature.

关 键 词:Lid-driven cavity INCOMPRESSIBLE STEADY Navier-Stokes equations polygonal finite element method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象