检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mohammad Al-Khatib Wafaa Saif
出 处:《Computers, Materials & Continua》2022年第3期4847-4865,共19页计算机、材料和连续体(英文)
基 金:Authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding and supporting this work through Graduate Student Research Support Program.
摘 要:The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem is compulsory to provide necessary security services.Elliptic curve cryptosystem(ECC)has been introduced as a considerable option.However,the usual sequential implementation of ECC and the standard elliptic curve(EC)form cannot achieve required performance level.Moreover,the widely used Hardware implementation of ECC is costly option and may be not affordable.This research aims to develop a high-performance parallel software implementation for ECC.To achieve this,many experiments were performed to examine several factors affecting ECC performance including the projective coordinates,the scalar multiplication algorithm,the elliptic curve(EC)form,and the parallel implementation.The ECC performance was analyzed using the different factors to tune-up them and select the best choices to increase the speed of the cryptosystem.Experimental results illustrated that parallel Montgomery ECC implementation using homogenous projection achieves the highest performance level,since it scored the shortest time delay for ECC computations.In addition,results showed thatNAF algorithm consumes less time to perform encryption and scalar multiplication operations in comparison withMontgomery ladder and binarymethods.Java multi-threading technique was adopted to implement ECC computations in parallel.The proposed multithreaded Montgomery ECC implementation significantly improves the performance level compared to previously presented parallel and sequential implementations.
关 键 词:Elliptic curve cryptosystem parallel software implementation MULTI-THREADING scalar multiplication algorithms modular arithmetic
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.189.148